Processing Math: 43%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.3:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Solution 1.3:3d moved to Lösung 1.3:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
The local extreme points of the function are one of the following,
+
Lokale Extrempunkte einer Funktion sind entweder:
-
# critical points, i.e. where <math>f^{\,\prime}(x)=0</math>,
+
# stationäre Punkte, wo <math>f^{\,\prime}(x)=0</math>,
-
# points where the function is not differentiable, and
+
# Singuläre Punkte, wo die Funktion nicht ableitbar ist, oder
-
# endpoints of the interval of definition.
+
# Endpunkte.
-
We start with items 2 and 3. The function consists of a quotient of two polynomials, so the only possibility that the function is not defined or differentiable is if the denominator is zero somewhere. The denominator <math>1+x^{4}</math> is, however, a sum of the number <math>1</math> and <math>x^{4}</math> which is always positive (<math>x^{4}</math> is the square of <math>x^{2}</math>), and hence the denominator is always greater than or equal to
+
Wir untersuchen zuerst die Bedienungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert wenn der Nenner null ist. Nachdem der Nenner <math>1+x^{4}</math> ist, wird er immer positiv.
<math>1</math>. The function is thus defined and differentiable everywhere. In order to determine the critical points, we differentiate the function using the quotient rule,
<math>1</math>. The function is thus defined and differentiable everywhere. In order to determine the critical points, we differentiate the function using the quotient rule,

Version vom 19:23, 26. Apr. 2009

Lokale Extrempunkte einer Funktion sind entweder:

  1. stationäre Punkte, wo f(x)=0,
  2. Singuläre Punkte, wo die Funktion nicht ableitbar ist, oder
  3. Endpunkte.

Wir untersuchen zuerst die Bedienungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert wenn der Nenner null ist. Nachdem der Nenner 1+x4 ist, wird er immer positiv. 1. The function is thus defined and differentiable everywhere. In order to determine the critical points, we differentiate the function using the quotient rule,

f(x)=1+x421+x21+x41+x21+x4=1+x422x1+x41+x24x3=1+x422x+2x54x34x5=1+x422x12x2x4.

The derivative is zero when the numerator is zero and this gives us the equation

2x12x2x4=0. 

The left-hand side is zero when one of the factors, x or 12x2x4 is zero, i.e. either x=0 or

12x2x4=0.

The last equation is a second-degree equation in x2, which is perhaps simpler to see if we substitute t=x2,

12tt2=0.

The solutions are obtained by completing the square,

t2+2t1(t+1)2121(t+1)2=0=0=2

and are t=12 . It is only one of these solutions, t=1+2 ,that is positive and can be equal to x2.

The function has therefore three critical points, x=21 , x=0 and x=21 .

We can determine the character of the critical points by writing down the sign of its derivative. It is useful to write down the derivative in an appropriately factorized form first. We know already that

f(x)=1+x422x12x2x4

and by completing the square of the expression 12x2x4 with respect to x2,

12x2x4=12x2+x4=1x2+1212=2x2+12

we can write the derivative in the form

f(x)=1+x422x2x2+12

where it is rather simple to determine the sign of the individual factors.


x 21  0 21 
2x \displaystyle 0 \displaystyle + \displaystyle + \displaystyle +
\displaystyle 2 - (x^2 + 1)^2 \displaystyle - \displaystyle 0 \displaystyle + \displaystyle + \displaystyle + \displaystyle 0 \displaystyle -
\displaystyle (x^4 + 1)^2 \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle +


If we multiply these factors together, we get an outline of the derivative's sign and can draw conclusions about whether the critical points are local maximum points, minimum points or neither.


\displaystyle x \displaystyle -\sqrt{ \sqrt{2} - 1} \displaystyle 0 \displaystyle \sqrt{ \sqrt{2} - 1}
\displaystyle \insteadof{2 - (x^2 + 1)^2}{f^{\, \prime} (x)} \displaystyle + \displaystyle 0 \displaystyle - \displaystyle 0 \displaystyle + \displaystyle 0 \displaystyle -
\displaystyle f(x) \displaystyle \nearrow \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) \displaystyle \searrow \displaystyle 1 \displaystyle \nearrow \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) \displaystyle \searrow


The function has local maximum points at \displaystyle x=\pm \sqrt{\sqrt{2}-1} and a local minimum at \displaystyle x=0.