Lösung 1.3:7
Aus Online Mathematik Brückenkurs 2
Zeile 16: | Zeile 16: | ||
Wir müssen jetzt den Radius <math>r</math> und die Höhe <math>h</math> durch den Winkel <math>\alpha</math> ausdrücken, sodass wir das Volumen <math>V</math> als Funktion von <math>\alpha </math> schreiben können. | Wir müssen jetzt den Radius <math>r</math> und die Höhe <math>h</math> durch den Winkel <math>\alpha</math> ausdrücken, sodass wir das Volumen <math>V</math> als Funktion von <math>\alpha </math> schreiben können. | ||
- | Schneiden wir einen Kreissektor mit dem Winkel <math>\alpha</math> aus dem Kreis, | + | Schneiden wir einen Kreissektor mit dem Winkel <math>\alpha</math> aus dem Kreis, ist der Umfang des übriggebliebenen Kreissegments |
<math>(2\pi-\alpha)R</math> sein, wobei <math>R</math> der ursprüngliche Radius ist. | <math>(2\pi-\alpha)R</math> sein, wobei <math>R</math> der ursprüngliche Radius ist. | ||
Zeile 22: | Zeile 22: | ||
Der Umfang des oberen Kreises ist aber auch | Der Umfang des oberen Kreises ist aber auch | ||
- | <math>2\pi r</math>, | + | <math>2\pi r</math>, also haben wir |
{{Abgesetzte Formel||<math>2\pi r = (2\pi-\alpha)R\quad\Leftrightarrow\quad r = \frac{2\pi -\alpha}{2\pi}\,R\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>2\pi r = (2\pi-\alpha)R\quad\Leftrightarrow\quad r = \frac{2\pi -\alpha}{2\pi}\,R\,\textrm{.}</math>}} | ||
- | Jetzt haben wir | + | Jetzt haben wir den neuen Radius <math>r</math> als Funktion des Winkels |
- | <math>\alpha</math> und | + | <math>\alpha</math> und dem ursprünglichen Radius <math>R</math> ausgedrückt. |
- | Um die Höhe zu | + | Um die Höhe zu bestimmen, benutzen wir den Satz des Pythagoras |
[[Image:1_3_7_1_4.gif||center]] | [[Image:1_3_7_1_4.gif||center]] |
Version vom 10:45, 6. Aug. 2009
Wie der Kegel gebaut wird, ist hier illustriert:
Nachdem wir den Volumen des Kegels maximieren wollen, betrachten wir nun die Maße Kegels.
Mit diesen Maßen ist das Volumen des Kegels:
![]() ![]() |
Wir müssen jetzt den Radius
Schneiden wir einen Kreissektor mit dem Winkel −
)R
Der Umfang des oberen Kreises ist aber auch
r
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Jetzt haben wir den neuen Radius
Um die Höhe zu bestimmen, benutzen wir den Satz des Pythagoras
Also haben wir
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Jetzt haben wir den Radius
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Unser Problem ist jetzt:
- Maximiere
V( , wo)=31
R3
2
2
−
2
1−
2
2
−
2
0 .2
- Maximiere
Bevor wir anfangen die Funktion abzuleiten, sehen wir dass dar Winkel
−
)
2
−
)
2
- Maximiere
V(x)=31 , wennR3x2
1−x2
0 .x
1
- Maximiere
Wenn
Wir leiten die Funktion ab,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
und vereinfachen den Ausdruck, indem wir so viele Faktoren wir möglich herausziehen,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Die Ableitung ist null wenn \displaystyle x=0 (dies ist auch ein Endpunkt) oder wenn \displaystyle 2-3x^2=0, also wenn \displaystyle x=\sqrt{2/3}\,. (Der Punkt \displaystyle x=-\sqrt{2/3} liegt außerhalb des Gebietes \displaystyle 0\le x\le 1.)
Durch einer Vorzeichentabelle erhalten wir die Vorzeichen der Faktoren,
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle x | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle \sqrt{1-x^2} | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle 0 |
\displaystyle 2-3x^2 | \displaystyle + | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle - |
und erhalten dadurch das Vorzeichen der Ableitung selbst
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle V'(x) | \displaystyle 0 | \displaystyle + | \displaystyle 0 | \displaystyle - | |
\displaystyle V(x) | \displaystyle 0 | \displaystyle \nearrow | \displaystyle \tfrac{4}{9\sqrt{3}}\pi R^3 | \displaystyle \searrow | \displaystyle 0 |
Wir sehen hier dass \displaystyle x=\sqrt{2/3} ein globales Maxima ist. \displaystyle x = \sqrt{2/3} entspricht den Winkel \displaystyle \alpha:
\displaystyle \sqrt{\frac{2}{3}}=\frac{2\pi-\alpha }{2\pi}\quad \Leftrightarrow\quad \alpha = 2\pi \bigl(1-\sqrt{2/3}\,\bigr)\ \text{radians.} |