Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_1e-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_3_1e-2(2).gif </center> {{NAVCONTENT_STOP}})
Aktuelle Version (07:56, 1. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 8 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wir rechnen in Polarform, da es dann einfacher ist, hohe Potenzen zu berechnen.
-
<center> [[Bild:3_3_1e-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
Zuerst bringen wir <math>1+i\sqrt{3}</math>, <math>1-i</math> und <math>\sqrt{3}-i</math> in Polarform.
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:3_3_1e-2(2).gif]] </center>
+
<center>[[Image:3_3_1_e.gif]] [[Image:3_3_1_e_text.gif]]</center>
-
{{NAVCONTENT_STOP}}
+
 
 +
Also ist
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
1+i\sqrt{3} &= 2\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\,\\[5pt]
 +
1-i &= \sqrt{2}\Bigl(\cos\Bigl(-\frac{\pi}{4}\Bigr) + i\sin\Bigl(-\frac{\pi}{4}\Bigr)\Bigr)\,\\[5pt]
 +
\sqrt{3}-i &= 2\Bigl(\cos\Bigl(-\frac{\pi}{6}\Bigr) + i\sin\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Mit den Moivreschen Satz erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\frac{\bigl(1+i\sqrt{3}\,\bigr)(1-i)^8}{\bigl(\sqrt{3}-i\bigr)^9}
 +
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\Bigl(\sqrt{2}\Bigl(\cos\Bigl(-\dfrac{\pi}{4}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)^8}{\Bigl( 2\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)^9}\\[5pt]
 +
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\bigl(\sqrt{2}\,\bigr)^8\Bigl(\cos\Bigl(8\cdot\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr) + i\sin\Bigl(8\cdot\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)}{2^{9}\Bigl(\cos\Bigl(9\cdot\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr) + i\sin\Bigl(9\cdot\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)}\\[5pt]
 +
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\cdot 2^{(1/2)\cdot 8}\bigl(\cos (-2\pi) + i\sin (-2\pi)\bigr)}{2^9\Bigl(\cos\Bigl(-\dfrac{3\pi}{2} \Bigr) + i\sin\Bigl(-\dfrac{3\pi}{2}\Bigr)\Bigr)}\\[5pt]
 +
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\cdot 2^4( 1+i\cdot 0)}{2^9\Bigl(\cos\Bigl(-\dfrac{3\pi}{2}\Bigr) + i\sin\Bigl(-\dfrac{3\pi}{2}\Bigr)\Bigr)}\\[5pt]
 +
&= \frac{2\cdot 2^4}{2^9}\Bigl(\cos\Bigl(\frac{\pi}{3}-\Bigl(-\frac{3\pi}{2}\Bigr) \Bigr) + i\sin\Bigl(\frac{\pi}{3}-\Bigl(-\frac{3\pi}{2}\Bigr)\Bigr)\Bigr)\\[5pt]
 +
&= \frac{2^5}{2^9}\Bigl(\cos\Bigl(\frac{\pi}{3}+\frac{3\pi}{2}\Bigr) + i\sin\Bigl(\frac{\pi}{3}+\frac{3\pi}{2}\Bigr)\Bigr)\\[5pt]
 +
&= \frac{1}{2^4}\Bigl(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\Bigr)\\[5pt]
 +
&= \frac{1}{16}\Bigl(\cos\frac{12\pi-\pi}{6} + i\sin\frac{12\pi-\pi}{6}\Bigr)\\[5pt]
 +
&= \frac{1}{16}\Bigl(\cos\Bigl(2\pi-\frac{\pi}{6}\Bigr) + i\sin\Bigl(2\pi-\frac{\pi}{6}\Bigr)\Bigr)\\[5pt]
 +
&= \frac{1}{16}\Bigl(\cos\Bigl(-\frac{\pi}{6}\Bigr) + i\sin\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\\[5pt]
 +
&= \frac{1}{16}\Bigl(\frac{\sqrt{3}}{2}-\frac{i}{2}\Bigr)\\[5pt]
 +
&= \frac{1}{32}\bigl(\sqrt{3}-i\bigr)\,\textrm{.}
 +
\end{align}</math>}}

Aktuelle Version

Wir rechnen in Polarform, da es dann einfacher ist, hohe Potenzen zu berechnen.

Zuerst bringen wir 1+i3 , 1i und 3i  in Polarform.

Image:3_3_1_e.gif Image:3_3_1_e_text.gif

Also ist

1+i31i3i=2cos3+isin3=2cos4+isin4=2cos6+isin6.

Mit den Moivreschen Satz erhalten wir

3i91+i3(1i)8=2cos6+isin692cos3+isin32cos4+isin48=29cos96+isin962cos3+isin328cos84+isin84=29cos23+isin232cos3+isin32(12)8cos(2)+isin(2)=29cos23+isin232cos3+isin324(1+i0)=29224cos323+isin323=2925cos3+23+isin3+23=124cos611+isin611=116cos612+isin612=116cos26+isin26=116cos6+isin6=11623i2=1323i.