Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.3:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Aktuelle Version (17:53, 9. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The only points which can possibly be local extreme points of the function are one of the following,
+
Lokale Extremstellen einer Funktion sind entweder:
-
# critical points, i.e. where <math>f^{\,\prime}(x) = 0\,</math>,
+
# stationäre Stellen mit <math>f^{\,\prime}(x)=0</math>,
-
# points where the function is not differentiable, and
+
# singuläre Stellen, in denen die Funktion nicht differenzierbarbar ist, oder
-
# endpoints of the interval of definition.
+
# Randstellen.
-
What determines the function's region of definition is <math>\ln x</math>, which is defined for <math>x > 0</math>, and this region does not have any endpoints (<math>x=0</math> does not satisfy <math>x>0</math>), so item 3 above does not give rise to any imaginable extreme points. Furthermore, the function is differentiable everywhere (where it is defined), because it consists of <math>x</math> and <math>\ln x</math> which are differentiable functions; so, item 2 above does not contribute any extreme points either.
+
Die Randstellen des Intervalls, in dem die Funktion definiert ist, erhalten wir dadurch, dass <math>\ln x</math> nur definiert ist, wenn <math>x > 0</math>. Daher ist die Funktion in der linken Randstelle des Intervalls nicht definiert, denn (<math>x=0</math> erfüllt nicht <math>x>0</math>), also kann die Bedingung 3 oben keine Extremwerte liefern. Weiterhin ist die Funktion überall differenzierbar, da <math>x</math> und <math>\ln x</math> überall differenzierbar sind, also erhalten wir keine Extremwerte mit der zweiten Bedingung.
-
All the remains are possibly critical points. We differentiate the function
+
Nun bleiben nur noch die stationären Stellen. Die Ableitung der Funktion ist
-
{{Abgesetzte Formel||<math>f^{\,\prime}(x) = 1\cdot \ln x + x\cdot \frac{1}{x} - 0 = \ln x+1</math>}}
+
{{Abgesetzte Formel||<math>f^{\,\prime}(x) = 1\cdot \ln x + x\cdot \frac{1}{x} - 0 = \ln x+1</math>.}}
-
and see that the derivative is zero when
+
Wir sehen, dass diese Funktion null ist, wenn
{{Abgesetzte Formel||<math>\ln x = -1\quad \Leftrightarrow \quad x = e^{-1}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\ln x = -1\quad \Leftrightarrow \quad x = e^{-1}\,\textrm{.}</math>}}
-
In order to determine whether this is a local maximum, minimum or saddle point, we calculate the second derivative, <math>f^{\,\prime\prime}(x) = 1/x</math>, which gives that
+
Wir berechnen die zweite Ableitung, um den Charakter dieser Extremstelle zu bestimmen. <math>f^{\,\prime\prime}(x) = 1/x</math>, also ist
-
{{Abgesetzte Formel||<math>f^{\,\prime\prime}\bigl(e^{-1}\bigr) = \frac{1}{e^{-1}} = e > 0\,,</math>}}
+
{{Abgesetzte Formel||<math>f^{\,\prime\prime}\bigl(e^{-1}\bigr) = \frac{1}{e^{-1}} = e > 0\,.</math>}}
-
which implies that <math>x=e^{-1}</math> is a local minimum.
+
Also hat die Funktion an der Stelle <math>x=e^{-1}</math> ein lokales Minimum.

Aktuelle Version

Lokale Extremstellen einer Funktion sind entweder:

  1. stationäre Stellen mit f(x)=0,
  2. singuläre Stellen, in denen die Funktion nicht differenzierbarbar ist, oder
  3. Randstellen.

Die Randstellen des Intervalls, in dem die Funktion definiert ist, erhalten wir dadurch, dass lnx nur definiert ist, wenn x0. Daher ist die Funktion in der linken Randstelle des Intervalls nicht definiert, denn (x=0 erfüllt nicht x0), also kann die Bedingung 3 oben keine Extremwerte liefern. Weiterhin ist die Funktion überall differenzierbar, da x und lnx überall differenzierbar sind, also erhalten wir keine Extremwerte mit der zweiten Bedingung.

Nun bleiben nur noch die stationären Stellen. Die Ableitung der Funktion ist

f(x)=1lnx+xx10=lnx+1.

Wir sehen, dass diese Funktion null ist, wenn

lnx=1x=e1.

Wir berechnen die zweite Ableitung, um den Charakter dieser Extremstelle zu bestimmen. f(x)=1x, also ist

fe1=1e1=e0 

Also hat die Funktion an der Stelle x=e1 ein lokales Minimum.