Processing Math: Done
Lösung 1.2:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We have a quotient between |
- | < | + | <math>\sin x</math> |
- | {{ | + | and |
+ | <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \frac{\sin x}{x} \right)^{\prime }=\frac{\left( \sin x \right)^{\prime }\centerdot x-\sin x\centerdot \left( x \right)^{\prime }}{x^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{\cos x\centerdot x-\sin x\centerdot 1}{x^{2}}=\frac{\cos x}{x}-\frac{\sin x}{x^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | It is also possible to see the expression as a product of | ||
+ | |||
+ | <math>\sin x</math> | ||
+ | and | ||
+ | <math>\frac{1}{x}</math>, and to use the product rule, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \sin x\centerdot \frac{1}{x} \right)^{\prime }=\left( \sin x \right)^{\prime }\centerdot \frac{1}{x}+\sin x\centerdot \left( \frac{1}{x} \right)^{\prime } \\ | ||
+ | & \\ | ||
+ | & =\cos x\centerdot \frac{1}{x}+\sin x\centerdot \left( -\frac{1}{x^{2}} \right)=\frac{\cos x}{x}-\frac{\sin x}{x^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | where we have used | ||
+ | |||
+ | |||
+ | <math>\left( \frac{1}{x} \right)^{\prime }=\left( x^{-1} \right)^{\prime }=\left( -1 \right)x^{-1-1}=-1\centerdot x^{-2}=-\frac{1}{x^{2}}</math> |
Version vom 15:33, 12. Sep. 2008
We have a quotient between
xsinx
=x2
sinx
x−sinx
x
=x2cosx
x−sinx
1=xcosx−x2sinx
It is also possible to see the expression as a product of
sinx
x1
=
sinx
x1+sinx
x1
=cosx
x1+sinx
−1x2
=xcosx−x2sinx
where we have used
x1
=
x−1
=
−1
x−1−1=−1
x−2=−1x2