Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.1:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:2d moved to Solution 1.1:2d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we write
-
<center> [[Image:1_1_2d.gif]] </center>
+
<math>\sqrt{x}</math>
-
{{NAVCONTENT_STOP}}
+
in power form
 +
<math>x^{{1}/{2}\;}</math>, we see that the square root is a function having the appearance of
 +
<math>x^{n}</math>
 +
and its derivative is therefore equal to
 +
 
 +
 
 +
<math>{f}'\left( x \right)=\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}</math>
 +
 
 +
The answer can also be written as
 +
 
 +
 
 +
<math>{f}'\left( x \right)=\frac{1}{2\sqrt{x}}</math>
 +
 
 +
 
 +
because
 +
<math>x^{-\frac{1}{2}}=\left( x^{\frac{1}{2}} \right)^{-1}=\left( \sqrt{x} \right)^{-1}=\frac{1}{\sqrt{x}}</math>

Version vom 11:30, 10. Okt. 2008

If we write x  in power form x12 , we see that the square root is a function having the appearance of xn and its derivative is therefore equal to


fx=ddxx=ddxx12=21x211=21x21 

The answer can also be written as


fx=12x 


because x21=x211=x1=1x