Processing Math: Done
Lösung 3.2:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
Zeile 4: | Zeile 4: | ||
<math>\begin{align} | <math>\begin{align} | ||
0 &\leq \mathrm{Re}z \leq 1,\\ | 0 &\leq \mathrm{Re}z \leq 1,\\ | ||
- | 0 &\leq \mathrm{Im}z \leq 1,\end{align} | + | 0 &\leq \mathrm{Im}z \leq 1,\end{align}</math> |
- | \mathrm{Re}z \leq \mathrm{Im}z | + | <math>\mathrm{Re}z \leq \mathrm{Im}z |
- | </math> | + | </math>. |
The first two inequalities in this list define the unit square in the complex number plane. | The first two inequalities in this list define the unit square in the complex number plane. |
Version vom 10:49, 3. Okt. 2008
The inequality Rez
Imz
1
Rez
1
Imz
1
Imz
The first two inequalities in this list define the unit square in the complex number plane.
The last inequality says that the real part of
All together, the inequalities define the region which the unit square and the half-plane have in common: a triangle with corner points at