Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
Lösung 1.1:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.1:2a moved to Solution 1.1:2a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | By using the rule for differentiation |
- | < | + | |
- | {{ | + | |
+ | <math>\frac{d}{dx}x^{n}=nx^{n-1}</math> | ||
+ | |||
+ | |||
+ | the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\ | ||
+ | & =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\ | ||
+ | \end{align}</math> |
Version vom 10:55, 10. Okt. 2008
By using the rule for differentiation
the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
\displaystyle \begin{align}
& {f}'\left( x \right)=\frac{d}{dx}\left( x^{2}-3x+1 \right)=\frac{d}{dx}x^{2}-3\frac{d}{dx}x^{1}+\frac{d}{dx}1 \\
& =2x^{2-1}-3\centerdot 1x^{1-1}+0=2x-3 \\
\end{align}