Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:4a moved to Solution 1.2:4a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives
-
<center> [[Image:1_2_4a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\begin{align}
-
<center> [[Image:1_2_4a-2(2).gif]] </center>
+
& \frac{d}{dx}\frac{x}{\sqrt{1-x^{2}}}=\frac{\left( x \right)^{\prime }\sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{\left( \sqrt{1-x^{2}} \right)^{2}} \\
-
{{NAVCONTENT_STOP}}
+
& \\
 +
& =\frac{1\centerdot \sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{1-x^{2}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
We determine the derivative
 +
<math>\left( \sqrt{1-x^{2}} \right)^{\prime }</math>
 +
by using the chain rule
 +
 
 +
 
 +
<math>\begin{align}
 +
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( 1-x^{2} \right)^{\prime }}{1-x^{2}} \\
 +
& \\
 +
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right)}{1-x^{2}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
We simplify the result as far as possible, so as to make the second differentiation easier:
 +
 
 +
 
 +
<math>\begin{align}
 +
& =\frac{\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
 +
& \\
 +
& =\frac{\frac{\left( \sqrt{1-x^{2}} \right)^{2}}{\sqrt{1-x^{2}}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
 +
& \\
 +
& =\frac{\frac{1-x^{2}+x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
 +
& \\
 +
& =\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The second derivative is:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d^{^{2}}}{dx^{^{2}}}\frac{x}{\sqrt{1-x^{2}}}=\frac{d}{dx}\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
 +
& \\
 +
& =\frac{d}{dx}\left( 1-x^{2} \right)^{-{3}/{2}\;}=-\frac{3}{2}\left( 1-x^{2} \right)^{-\frac{3}{2}-1}\centerdot \left( 1-x^{2} \right)^{\prime } \\
 +
& \\
 +
& =-\frac{3}{2}\left( 1-x^{2} \right)^{{-5}/{2}\;}\centerdot \left( -2x \right)=3x\left( 1-x^{2} \right)^{{-5}/{2}\;} \\
 +
& \\
 +
& =\frac{3x}{\left( 1-x^{2} \right)^{{5}/{2}\;}} \\
 +
\end{align}</math>

Version vom 14:04, 12. Okt. 2008

We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives


ddxx1x2=1x22x1x2x1x2=1x211x2x1x2


We determine the derivative 1x2  by using the chain rule


=1x21x2x121x21x2=1x21x2x121x22x


We simplify the result as far as possible, so as to make the second differentiation easier:


=1x21x2+x21x2=1x21x21x22+x21x2=1x21x21x2+x2=11x232


The second derivative is:


d2dx2x1x2=ddx11x232=ddx1x232=231x22311x2=231x2522x=3x1x252=3x1x252