Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
Lösung 2.1:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:1d moved to Solution 2.1:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | The modulus function, | |
- | < | + | <math>\left| x \right|</math>, strips |
- | + | <math>x</math> | |
- | + | of its sign, e.g. | |
- | < | + | |
- | + | ||
+ | <math>\left| -5 \right|=5</math>, | ||
+ | <math>\left| 3 \right|=3</math> | ||
+ | and | ||
+ | <math>\left| -\pi \right|=\pi </math> | ||
+ | |||
+ | |||
+ | For positive values of | ||
+ | <math>x</math>, the modulus function has no effect, since | ||
+ | <math>\left| x \right|=x</math>, but for negative | ||
+ | <math>x</math> | ||
+ | the modulus function changes the sign of | ||
+ | <math>x</math>, i.e. | ||
+ | <math>\left| -x \right|=x</math> | ||
+ | (remember that | ||
+ | <math>x</math> | ||
+ | is negative and therefore | ||
+ | <math>-x</math> | ||
+ | is positive). | ||
+ | |||
+ | If we draw a graph of | ||
+ | <math>y=\left| x \right|</math> | ||
+ | it will consist of two parts. For | ||
+ | <math>x\ge 0</math> | ||
+ | we have | ||
+ | <math>y=x</math>, and for | ||
+ | <math>x\le 0</math> | ||
+ | we have | ||
+ | <math>y=-x</math> | ||
+ | |||
+ | |||
+ | |||
[[Image:2_1_1_d1.gif|center]] | [[Image:2_1_1_d1.gif|center]] | ||
+ | |||
+ | |||
+ | The value of the integral is the area of the region under the graph | ||
+ | <math>y=\left| x \right|</math> | ||
+ | and between | ||
+ | <math>x=-1</math> | ||
+ | and | ||
+ | <math>x=2</math>. | ||
+ | |||
+ | |||
[[Image:2_1_1_d2.gif|center]] | [[Image:2_1_1_d2.gif|center]] | ||
+ | |||
+ | |||
+ | This region consists of two triangles and we therefore obtain | ||
+ | |||
+ | <math>\int\limits_{-1}^{2}{\left| x \right|}\,dx=\frac{1}{2}\centerdot 1\centerdot 1+\frac{1}{2}\centerdot 2\centerdot 2=\frac{5}{2}</math> |
Version vom 12:24, 17. Okt. 2008
The modulus function,
x
−5
=5
3
=3
−
=
For positive values of
x
=x
−x
=x
If we draw a graph of
x
0
0
The value of the integral is the area of the region under the graph
x
This region consists of two triangles and we therefore obtain
\displaystyle \int\limits_{-1}^{2}{\left| x \right|}\,dx=\frac{1}{2}\centerdot 1\centerdot 1+\frac{1}{2}\centerdot 2\centerdot 2=\frac{5}{2}