Processing Math: Done
Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:2b moved to Solution 2.1:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | There is no ready made standard formula for a primitive function to our integrand, but if we expand |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \int\limits_{-1}^{2}{\left( x-2 \right)\left( x+1 \right)\,dx}=\int\limits_{-1}^{2}{\left( x^{2}+x-2x-2 \right)}\,dx \\ | ||
+ | & \int\limits_{-1}^{2}{\left( x^{2}-x-2 \right)}\,dx \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | and write the last integral as | ||
+ | |||
+ | |||
+ | <math>\int\limits_{-1}^{2}{\left( x^{2}-x^{1}-2x^{0} \right)}\,dx</math> | ||
+ | |||
+ | we see that the integrand consists of three terms of the type | ||
+ | <math>x^{n}</math> | ||
+ | and we can directly write down a primitive function: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{-1}^{2}{\left( x^{2}-x^{1}-2x^{0} \right)}\,dx=\left[ \frac{x^{3}}{3}-\frac{x^{2}}{2}-2\centerdot \frac{x}{1} \right]_{-1}^{2} \\ | ||
+ | & =\frac{2^{3}}{3}-\frac{2^{2}}{2}-2\centerdot \frac{2}{1}-\left( \frac{\left( -1 \right)^{3}}{3}-\frac{\left( -1 \right)^{2}}{2}-2\centerdot \frac{\left( -1 \right)}{1} \right) \\ | ||
+ | & =\frac{8}{3}-\frac{4}{2}-4-\left( -\frac{1}{3}-\frac{1}{2}+2 \right) \\ | ||
+ | & =\frac{16-12-24+2+3-12}{6}=-\frac{27}{6}=-\frac{9}{2} \\ | ||
+ | \end{align}</math> |
Version vom 12:57, 17. Okt. 2008
There is no ready made standard formula for a primitive function to our integrand, but if we expand
2−1
x−2
x+1
dx=
2−1
x2+x−2x−2
dx
2−1
x2−x−2
dx
and write the last integral as
2−1
x2−x1−2x0
dx
we see that the integrand consists of three terms of the type
2−1
x2−x1−2x0
dx=
3x3−2x2−2
x1
2−1=323−222−2
12−
3
−1
3−2
−1
2−2
1
−1
=38−24−4−
−31−21+2
=616−12−24+2+3−12=−627=−29