Processing Math: Done
Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:2c moved to Solution 2.1:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we recall that |
- | < | + | <math>\sqrt{x}=x^{{1}/{2}\;}</math>, the integral can be written as |
- | {{ | + | |
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{4}^{9}{\left( \sqrt{x}-\frac{1}{\sqrt{x}} \right)}\,dx=\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-\frac{1}{x^{{1}/{2}\;}} \right)}\,dx \\ | ||
+ | & =\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | This is a standard integral in which the integrand consists of two terms looking like | ||
+ | <math>x^{n}</math>, where | ||
+ | <math>n=\frac{1}{2}</math> | ||
+ | and | ||
+ | <math>n=-\frac{1}{2}</math>. | ||
+ | |||
+ | We obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx=\left[ \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right]_{4}^{9} \\ | ||
+ | & =\left[ \frac{x^{1+\frac{1}{2}}}{\frac{3}{2}}-\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{4}^{9} \\ | ||
+ | & =\left[ \frac{2}{3}x\sqrt{x}-2\sqrt{x} \right]_{4}^{9} \\ | ||
+ | & =\frac{2}{3}\centerdot 9\centerdot \sqrt{9}-2\sqrt{9}-\left( \frac{2}{3}\centerdot 4\centerdot \sqrt{4}-2\sqrt{4} \right) \\ | ||
+ | & =\frac{2}{3}93-2\centerdot 3-\left( \frac{2}{3}\centerdot 4\centerdot 2-2\centerdot 2 \right) \\ | ||
+ | & =18-6-\frac{16}{3}+4=16-\frac{16}{3} \\ | ||
+ | & =\frac{16\centerdot 3-16}{3}=\frac{32}{3} \\ | ||
+ | \end{align}</math> |
Version vom 13:14, 17. Okt. 2008
If we recall that
x=x1
2
94
x−1
x
dx=
94
x1
2−1x1
2
dx=
94
x1
2−x−1
2
dx
This is a standard integral in which the integrand consists of two terms looking like
We obtain
94
x1
2−x−1
2
dx=
x21+121+1−x−21+1−21+1
94=
23x1+21−21x21
94=
32x
x−2
x
94=32
9
9−2
9−
32
4
4−2
4
=3293−2
3−
32
4
2−2
2
=18−6−316+4=16−316=316
3−16=332