Processing Math: Done
Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:2d moved to Solution 2.1:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we rewrite |
- | < | + | <math>\sqrt{x}</math> |
- | {{ | + | as |
+ | <math>x^{{1}/{2}\;}</math>, the integrand can then be simplified using the power laws: | ||
+ | |||
+ | |||
+ | <math>\int\limits_{1}^{4}{\frac{\sqrt{x}}{x^{2}}}\,dx=\int\limits_{1}^{4}{\frac{x^{\frac{1}{2}}}{x^{2}}}\,dx=\int\limits_{1}^{4}{x^{\frac{1}{2}-2}}\,dx=\int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx</math> | ||
+ | |||
+ | |||
+ | We can now use the fact that a primitive function for | ||
+ | <math>x^{n}</math> | ||
+ | is | ||
+ | <math>\frac{x^{n+1}}{n+1}</math> | ||
+ | and calculate the integral's value: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx=\left[ \frac{x^{-\frac{3}{2}+1}}{^{-\frac{3}{2}+1}} \right]_{1}^{4} \\ | ||
+ | & =\left[ \frac{x^{-\frac{1}{2}}}{^{-\frac{1}{2}}} \right]_{1}^{4}=\left[ -2\frac{1}{x^{{1}/{2}\;}} \right]_{1}^{4} \\ | ||
+ | & =\left[ -\frac{2}{\sqrt{x}} \right]_{1}^{4}=-\frac{2}{\sqrt{4}}-\left( -\frac{2}{\sqrt{1}} \right) \\ | ||
+ | & =-\frac{2}{2}+2=1 \\ | ||
+ | \end{align}</math> |
Version vom 13:27, 17. Okt. 2008
If we rewrite
x
2
41x2
xdx=
41x2x21dx=
41x21−2dx=
41x−23dx
We can now use the fact that a primitive function for
41x−23dx=
−23+1x−23+1
41=
−21x−21
41=
−21x1
2
41=
−2
x
41=−2
4−
−2
1
=−22+2=1