Lösung 2.1:5a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:5a moved to Solution 2.1:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | (HINT: multiply the top and bottom by the conjugate of the denominator.) |
- | < | + | |
- | {{ | + | If we multiply top and bottom of the fraction by the conjugate expression, |
- | {{ | + | <math>\sqrt{x+9}+\sqrt{x}</math>, then the conjugate rule gives that denominator's root is squared away: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \frac{1}{\sqrt{x+9}-\sqrt{x}}=\frac{1}{\sqrt{x+9}-\sqrt{x}}\centerdot \frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}} \\ | ||
+ | & =\frac{\sqrt{x+9}+\sqrt{x}}{\left( \sqrt{x+9} \right)^{2}-\left( \sqrt{x} \right)^{2}} \\ | ||
+ | & =\frac{\sqrt{x+9}+\sqrt{x}}{x+9-x} \\ | ||
+ | & =\frac{\sqrt{x+9}+\sqrt{x}}{9} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, | ||
+ | |||
+ | |||
+ | <math>\int{\frac{\,dx}{\sqrt{x+9}-\sqrt{x}}}=\frac{1}{9}\int{\left( \sqrt{x+9}+\sqrt{x} \right)}\,dx</math> | ||
+ | |||
+ | |||
+ | If we write the square roots in power form, | ||
+ | |||
+ | |||
+ | <math>\frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx</math>, | ||
+ | |||
+ | we see that we have a standard integral and can write down the primitive functions directly: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{9}\int{\left( \left( x+9 \right)^{\frac{1}{2}}+x^{\frac{1}{2}} \right)}\,dx=\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right)+C \\ | ||
+ | & =\frac{1}{9}\left( \frac{\left( x+9 \right)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right)+C \\ | ||
+ | & =\frac{1}{9}\left( \frac{2}{3}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{3}x^{\frac{3}{2}} \right)+C \\ | ||
+ | & =\frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \\ | ||
+ | & \\ | ||
+ | \end{align}</math>, | ||
+ | |||
+ | where C is an arbitrary constant. | ||
+ | |||
+ | This can also be written with square roots as | ||
+ | |||
+ | |||
+ | <math>\frac{2}{27}\left( x+9 \right)\sqrt{x+9}+\frac{2}{27}x\sqrt{x}+C</math> | ||
+ | |||
+ | |||
+ | To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}\left( \frac{2}{27}\left( x+9 \right)^{\frac{3}{2}}+\frac{2}{27}x^{\frac{3}{2}}+C \right) \\ | ||
+ | & =\frac{2}{27}\centerdot \frac{3}{2}\left( x+9 \right)^{\frac{3}{2}-1}+\frac{2}{27}\centerdot \frac{3}{2}x^{\frac{3}{2}-1}+0 \\ | ||
+ | & =\frac{1}{9}\left( x+9 \right)^{\frac{1}{2}}+\frac{1}{9}x^{\frac{1}{2}} \\ | ||
+ | \end{align}</math> |
Version vom 13:29, 18. Okt. 2008
(HINT: multiply the top and bottom by the conjugate of the denominator.)
If we multiply top and bottom of the fraction by the conjugate expression,
x+9+
x
x+9−
x=1
x+9−
x
x+9+
x
x+9+
x=
x+9+
x
x+9
2−
x
2=x+9−x
x+9+
x=9
x+9+
x
Thus,
dx
x+9−
x=91
x+9+
x
dx
If we write the square roots in power form,
x+9
21+x21
dx
we see that we have a standard integral and can write down the primitive functions directly:
x+9
21+x21
dx=91
21+1
x+9
21+1+x21+121+1
+C=91
23
x+9
23+23x23
+C=91
32
x+9
23+32x23
+C=227
x+9
23+227x23+C
where C is an arbitrary constant.
This can also be written with square roots as
x+9
x+9+227x
x+C
To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand:
227
x+9
23+227x23+C
=227
23
x+9
23−1+227
23x23−1+0=91
x+9
21+91x21