Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:1c moved to Solution 2.2:1c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
With the given variable substitution,
-
<center> [[Image:2_2_1c).gif]] </center>
+
<math>u=x^{3}</math>
-
{{NAVCONTENT_STOP}}
+
we obtain
 +
 
 +
 
 +
<math>du=\left( x^{3} \right)^{\prime }\,dx=3x^{2}\,dx</math>
 +
 
 +
 
 +
and because the integral contains
 +
<math>x^{2}</math>
 +
as a factor, we can bundle it together with
 +
<math>dx</math>
 +
and replace the combination with
 +
<math>\frac{1}{3}\,du</math>,
 +
 
 +
 
 +
<math>\int{e^{x^{3}}x^{2}\,dx=\left\{ u=x^{3} \right\}}=\int{e^{u}}\frac{1}{3}\,du=\frac{1}{3}e^{u}+C</math>
 +
 
 +
 
 +
Thus, the answer is
 +
 
 +
 
 +
<math>\int{e^{x^{3}}x^{2}\,dx=}\frac{1}{3}e^{x^{3}}+C</math>
 +
 
 +
 
 +
where
 +
<math>C</math>
 +
is an arbitrary constant.

Version vom 09:55, 19. Okt. 2008

With the given variable substitution, u=x3 we obtain


du=x3dx=3x2dx 


and because the integral contains x2 as a factor, we can bundle it together with dx and replace the combination with 31du,


ex3x2dx=u=x3=eu31du=31eu+C 


Thus, the answer is


ex3x2dx=31ex3+C 


where C is an arbitrary constant.