Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.2:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:2a moved to Solution 2.2:2a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The integral is a standard integral, with
-
<center> [[Image:2_2_2a-1(2).gif]] </center>
+
<math>\text{5}x</math>
-
{{NAVCONTENT_STOP}}
+
as the argument of the cosine function. If we therefore substitute
-
{{NAVCONTENT_START}}
+
<math>u=\text{5}x</math>, we obtain the “correct” argument of the cosine,
-
<center> [[Image:2_2_2a-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \int\limits_{0}^{\pi }{\cos 5x\,dx=\left\{ \begin{array}{*{35}l}
 +
u=\text{5}x \\
 +
du=\left( 5x \right)^{\prime }\,dx=5\,dx \\
 +
\end{array} \right\}} \\
 +
& =\frac{1}{5}\int\limits_{0}^{5\pi }{\cos u\,du} \\
 +
\end{align}</math>
 +
 
 +
As can be seen, the variable change replaced
 +
<math>dx</math>
 +
by
 +
<math>\frac{1}{5}\,du</math>
 +
and the new limits of integration become
 +
<math>u=5\centerdot 0=0</math>
 +
and
 +
<math>u=5\centerdot \pi =5\pi </math>.
 +
 
 +
Now, we have a standard integral which can easily compute:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{5}\int\limits_{0}^{5\pi }{\cos u\,du}=\frac{1}{5}\left[ \sin u \right]_{0}^{5\pi } \\
 +
& =\frac{1}{5}\left( \sin 5\pi -\sin 0 \right)=\frac{1}{5}\left( 0-0 \right)=0 \\
 +
\end{align}</math>
 +
 
 +
 
 +
NOTE: if we draw the graph for
 +
<math>y=\cos 5x</math>, we see also that the area between the curve and
 +
<math>x</math>
 +
-axis above the
 +
<math>x</math>
 +
-axis is the same as the area under the
 +
<math>x</math>
 +
-axis.
[[Image:2_2_2_a.gif|center]]
[[Image:2_2_2_a.gif|center]]

Version vom 10:07, 19. Okt. 2008

The integral is a standard integral, with 5x as the argument of the cosine function. If we therefore substitute u=5x, we obtain the “correct” argument of the cosine,


0cos5xdx=u=5xdu=5xdx=5dx=5150cosudu

As can be seen, the variable change replaced dx by 51du and the new limits of integration become u=50=0 and u=5=5.

Now, we have a standard integral which can easily compute:


5150cosudu=51sinu05=51sin5sin0=5100=0


NOTE: if we draw the graph for y=cos5x, we see also that the area between the curve and x -axis above the x -axis is the same as the area under the x -axis.