Processing Math: Done
Lösung 2.2:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.2:2c moved to Solution 2.2:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we focus on the integrand, then the substitution |
- | < | + | <math>u=\text{3}x+\text{1}</math> |
- | {{ | + | seems suitable, since we then get |
+ | <math>\sqrt{u}</math> | ||
+ | which we can integrate. There is also no risk involved in using a linear substitution such as | ||
+ | <math>u=\text{3}x+\text{1}</math>, because the relation between | ||
+ | <math>dx\text{ }</math> | ||
+ | and | ||
+ | <math>du</math> | ||
+ | will be a constant factor, | ||
+ | |||
+ | |||
+ | <math>du=\left( \text{3}x+\text{1} \right)^{1}\,dx=3\,dx</math> | ||
+ | |||
+ | |||
+ | which does not cause any problems. | ||
+ | |||
+ | We obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{0}^{5}{\sqrt{3x+1}}\,dx=\left\{ \begin{matrix} | ||
+ | u=\text{3}x+\text{1} \\ | ||
+ | du=3\,dx \\ | ||
+ | \end{matrix} \right\}=\frac{1}{3}\int\limits_{1}^{16}{\sqrt{u}}\,du \\ | ||
+ | & =\frac{1}{3}\int\limits_{1}^{16}{u^{{1}/{2}\;}}\,du=\frac{1}{3}\left[ \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right]_{1}^{16} \\ | ||
+ | & =\frac{1}{3}\left[ \frac{2}{3}u\sqrt{u} \right]_{1}^{16}=\frac{2}{9}\left( 16\sqrt{16}-1\sqrt{1} \right) \\ | ||
+ | & =\frac{2}{9}\left( 16\centerdot 4-1 \right)=\frac{2\centerdot 63}{9}=14 \\ | ||
+ | \end{align}</math> |
Version vom 12:10, 20. Okt. 2008
If we focus on the integrand, then the substitution
u
3x+1
1dx=3dx
which does not cause any problems.
We obtain
50
3x+1dx=
u=3x+1du=3dx
=31
161
udu=31
161u1
2du=31
u21+121+1
116=31
32u
u
116=92
16
16−1
1
=92
16
4−1
=92
63=14