Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3a moved to Solution 2.2:3a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
-
<center> [[Image:2_2_3a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\int{\left( \begin{matrix}
 +
\text{an}\quad \text{expression} \\
 +
\text{in}\quad u \\
 +
\end{matrix} \right)}\centerdot {u}'\,dx</math>,
 +
 
 +
where
 +
<math>u=u\left( x \right)</math>
 +
is the actual substitution. In the integral
 +
 
 +
 
 +
<math>\int{2x\sin x^{2}\,dx}</math>
 +
 
 +
 
 +
we see that the expression
 +
<math>x^{2}</math>
 +
is the argument for the sine function, as the same time as its derivative
 +
<math>\left( x^{2} \right)^{\prime }=2x</math>
 +
stands as a factor in front of sine. Therefore, if we set
 +
<math>u=x^{2}</math>, the integral, the integral will be of the form
 +
 
 +
 
 +
<math>\int{{u}'\sin u\,dx}</math>
 +
 
 +
 
 +
Thus, we can use
 +
<math>u=x^{2}</math>
 +
for the substitution:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix}
 +
u=x^{2} \\
 +
du=2x\,dx \\
 +
\end{matrix} \right\}=\int{\sin u\,du} \\
 +
& =-\cos u+C=-\cos x^{2}+C \\
 +
\end{align}</math>

Version vom 12:51, 20. Okt. 2008

The secret behind a successful substitution is to be able to recognize the integral as an expression of the type


anexpressioninuudx ,

where u=ux  is the actual substitution. In the integral


2xsinx2dx 


we see that the expression x2 is the argument for the sine function, as the same time as its derivative x2=2x  stands as a factor in front of sine. Therefore, if we set u=x2, the integral, the integral will be of the form


usinudx 


Thus, we can use u=x2 for the substitution:


2xsinx2dx=u=x2du=2xdx=sinudu=cosu+C=cosx2+C