Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.2:5d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.2:5d moved to Solution 3.2:5d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
When dividing two complex numbers, the numerator's magnitude is divided by the denominator's absolute value and the numerator's argument is subtracted from the numerator's argument.
-
<center> [[Image:3_2_5d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
The argument of the quotient
 +
<math>\frac{i}{1+i}</math>
 +
is therefore
 +
 
 +
 
 +
<math>\arg \frac{i}{1+i}=\arg i-\arg \left( 1+i \right)</math>
 +
 
 +
 
 +
We obtain the argument of
 +
<math>i</math>
 +
and
 +
<math>\text{1}+i</math>
 +
by drawing the numbers in the complex plane and using a little trigonometry:
 +
 
[[Image:3_2_5_d.gif|center]]
[[Image:3_2_5_d.gif|center]]
 +
 +
 +
Hence, we obtain
 +
 +
 +
<math>\arg \frac{i}{1+i}=\arg i-\arg \left( 1+i \right)=\frac{\pi }{2}-\frac{\pi }{4}=\frac{\pi }{4}</math>

Version vom 10:03, 23. Okt. 2008

When dividing two complex numbers, the numerator's magnitude is divided by the denominator's absolute value and the numerator's argument is subtracted from the numerator's argument.

The argument of the quotient i1+i is therefore


argi1+i=argiarg1+i 


We obtain the argument of i and 1+i by drawing the numbers in the complex plane and using a little trigonometry:



Hence, we obtain


argi1+i=argiarg1+i=24=4