Processing Math: Done
Lösung 3.2:6f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.2:6f moved to Solution 3.2:6f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can write every factor in the numerator and denominator in polar form and then use the arithmetical rules for multiplication and division in polar form: |
- | + | ||
- | { | + | |
- | {{ | + | <math>\begin{array}{*{35}l} |
- | + | \bullet \quad r_{1}\left( \cos \alpha +i\sin \alpha \right)\centerdot r_{2}\left( \cos \beta +i\sin \beta \right)=r_{1}r_{2} \\ | |
- | + | \bullet \quad \frac{r_{1}\left( \cos \alpha +i\sin \alpha \right)}{r_{2}\left( \cos \beta +i\sin \beta \right)}=\frac{r_{1}}{r_{2}}\left( \cos \left( \alpha -\beta \right)+i\sin \left( \alpha -\beta \right) \right) \\ | |
+ | \end{array}</math> | ||
+ | |||
+ | |||
+ | In fact, most of the work consists of writing all the factors in polar form: | ||
+ | |||
[[Image:3_2_6_f1_bild.gif]][[Image:3_2_6_f1_bildtext.gif]] | [[Image:3_2_6_f1_bild.gif]][[Image:3_2_6_f1_bildtext.gif]] | ||
[[Image:3_2_6_f2_bild.gif]][[Image:3_2_6_f2_bildtext.gif]] | [[Image:3_2_6_f2_bild.gif]][[Image:3_2_6_f2_bildtext.gif]] | ||
+ | |||
+ | The whole expression becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{\left( 2+2i \right)\left( 1+i\sqrt{3} \right)}{3i\left( \sqrt{12}-2i \right)}=\frac{2\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right)\centerdot 2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)}{3\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\centerdot 4\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right)} \\ | ||
+ | & =\frac{4\sqrt{2}\left( \cos \left( \frac{\pi }{4}+\frac{\pi }{3} \right)+i\sin \left( \frac{\pi }{4}+\frac{\pi }{3} \right) \right)}{12\left( \cos \left( \frac{\pi }{2}-\frac{\pi }{6} \right)+i\sin \left( \frac{\pi }{2}-\frac{\pi }{6} \right) \right)} \\ | ||
+ | & =\frac{4\sqrt{2}\left( \cos \frac{7\pi }{12}+i\sin \frac{7\pi }{12} \right)}{12\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)} \\ | ||
+ | & =\frac{4\sqrt{2}}{12}\left( \cos \left( \frac{7\pi }{12}-\frac{\pi }{3} \right)+i\sin \left( \frac{7\pi }{12}-\frac{\pi }{3} \right) \right) \\ | ||
+ | & =\frac{\sqrt{2}}{3}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ | ||
+ | \end{align}</math> |
Version vom 11:00, 23. Okt. 2008
We can write every factor in the numerator and denominator in polar form and then use the arithmetical rules for multiplication and division in polar form:
r1
cos
+isin
r2
cos
+isin
=r1r2
r2
cos
+isin
r1
cos
+isin
=r2r1
cos
−
+isin
−
In fact, most of the work consists of writing all the factors in polar form:
The whole expression becomes
12−2i
2+2i
1+i
3
=2
2
cos
4+isin
4
2
cos
3+isin
3
3
cos
2+isin
2
4
cos
−
6
+isin
−
6
=12
cos
2−
6
+isin
2−
6
4
2
cos
4+
3
+isin
4+
3
=12
cos
3+isin
3
4
2
cos7
12+isin7
12
=124
2
cos
127
−
3
+isin
127
−
3
=3
2
cos
4+isin
4