Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:1e moved to Solution 3.3:1e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
One part of the quotient has rather high exponents and this indicates that we ought to use polar form for the calculation.
-
<center> [[Image:3_3_1e-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
First, we write
-
{{NAVCONTENT_START}}
+
<math>1+i\sqrt{3}</math>,
-
<center> [[Image:3_3_1e-2(2).gif]] </center>
+
<math>\text{1}-i</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>\sqrt{3}-i</math>
 +
in polar form.
[[Image:3_3_1_e.gif]] [[Image:3_3_1_e_text.gif]]
[[Image:3_3_1_e.gif]] [[Image:3_3_1_e_text.gif]]
 +
 +
This shows that
 +
 +
 +
<math>\begin{align}
 +
& 1+i\sqrt{3}=2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right) \\
 +
& \text{1}-i=\sqrt{2}\left( \cos \left( -\frac{\pi }{4} \right)+i\sin \left( -\frac{\pi }{4} \right) \right) \\
 +
& \sqrt{3}-i=2\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right) \\
 +
\end{align}</math>
 +
 +
 +
Now, with the help of de Moivre's formula,
 +
 +
 +
<math>\begin{align}
 +
& \frac{\left( 1+i\sqrt{3} \right)\left( \text{1}-i \right)^{8}}{\left( \sqrt{3}-i \right)^{9}}=\frac{2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)\left( \sqrt{2}\left( \cos \left( -\frac{\pi }{4} \right)+i\sin \left( -\frac{\pi }{4} \right) \right) \right)^{8}}{\left( 2\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right) \right)^{9}} \\
 +
& =\frac{2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)\left( \sqrt{2} \right)^{8}\left( \cos \left( 8\centerdot \left( -\frac{\pi }{4} \right) \right)+i\sin \left( 8\centerdot \left( -\frac{\pi }{4} \right) \right) \right)}{2^{9}\left( \cos \left( 9\centerdot \left( -\frac{\pi }{6} \right) \right)+i\sin \left( 9\centerdot \left( -\frac{\pi }{6} \right) \right) \right)} \\
 +
& =\frac{2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)\centerdot 2^{\frac{1}{2}\centerdot 8}\left( \cos \left( -2\pi \right)+i\sin \left( -2\pi \right) \right)}{2^{9}\left( \cos \left( -\frac{3\pi }{2} \right)+i\sin \left( -\frac{3\pi }{2} \right) \right)} \\
 +
& =\frac{2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)\centerdot 2^{4}\left( 1+i\centerdot 0 \right)}{2^{9}\left( \cos \left( -\frac{3\pi }{2} \right)+i\sin \left( -\frac{3\pi }{2} \right) \right)} \\
 +
& =\frac{2\centerdot 2^{4}}{2^{9}}\left( \cos \left( \frac{\pi }{3}-\left( -\frac{3\pi }{2} \right) \right)+i\sin \left( \frac{\pi }{3}-\left( -\frac{3\pi }{2} \right) \right) \right) \\
 +
& =\frac{2^{5}}{2^{9}}\left( \cos \left( \frac{\pi }{3}+\frac{3\pi }{2} \right)+i\sin \left( \frac{\pi }{3}+\frac{3\pi }{2} \right) \right) \\
 +
& =\frac{1}{2^{4}}\left( \cos \frac{11\pi }{6}+i\sin \frac{11\pi }{6} \right) \\
 +
& =\frac{1}{16}\left( \cos \frac{12\pi -\pi }{6}+i\sin \frac{12\pi -\pi }{6} \right) \\
 +
& =\frac{1}{16}\left( \cos \left( 2\pi -\frac{\pi }{6} \right)+i\sin \left( 2\pi -\frac{\pi }{6} \right) \right) \\
 +
& =\frac{1}{16}\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right) \\
 +
& =\frac{1}{16}\left( \frac{\sqrt{3}}{2}-\frac{i}{2} \right)=\frac{1}{32}\left( \sqrt{3}-i \right) \\
 +
\end{align}</math>

Version vom 08:21, 24. Okt. 2008

One part of the quotient has rather high exponents and this indicates that we ought to use polar form for the calculation.

First, we write 1+i3 , 1i and 3i  in polar form.


Image:3_3_1_e.gif Image:3_3_1_e_text.gif

This shows that


1+i3=2cos3+isin31i=2cos4+isin43i=2cos6+isin6


Now, with the help of de Moivre's formula,


3i91+i31i8=2cos6+isin692cos3+isin32cos4+isin48=29cos96+isin962cos3+isin328cos84+isin84=29cos23+isin232cos3+isin32218cos2+isin2=29cos23+isin232cos3+isin3241+i0=29224cos323+isin323=2925cos3+23+isin3+23=124cos611+isin611=116cos612+isin612=116cos26+isin26=116cos6+isin6=11623i2=1323i