Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:2d moved to Solution 3.3:2d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we use
-
<center> [[Image:3_3_2d-1(2).gif]] </center>
+
<math>w=z-\text{1}</math>
-
{{NAVCONTENT_STOP}}
+
as a new unknown and move the term
-
{{NAVCONTENT_START}}
+
<math>\text{4}</math>
-
<center> [[Image:3_3_2d-2(2).gif]] </center>
+
over to the right-hand side, we have a binomial equation,
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>w^{4}=-4</math>
 +
 
 +
 
 +
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
 +
 
 +
 
 +
<math>\begin{align}
 +
& w=r\left( \cos \alpha +i\sin \alpha \right) \\
 +
& -4=4\left( \cos \pi +i\sin \pi \right) \\
 +
\end{align}</math>
 +
 
 +
 
 +
and the equation becomes
 +
 
 +
 
 +
<math>r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=4\left( \cos \pi +i\sin \pi \right)</math>
 +
 
 +
 
 +
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
 +
<math>2\pi </math>,
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
r^{4}=4 \\
 +
4\alpha =\pi +2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
which gives us that
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
r=\sqrt[4]{2}=\sqrt{2} \\
 +
\alpha =\frac{\pi }{4}+\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
for
 +
<math>n=0,\ 1,\ 2</math>
 +
and
 +
<math>3</math>, the argument
 +
<math>\alpha </math>
 +
assumes the four different values
 +
 
 +
 
 +
<math>\frac{\pi }{4},\ \frac{3\pi }{4},\ \frac{5\pi }{4}</math>
 +
and
 +
<math>\frac{7\pi }{4}</math>
 +
 
 +
 
 +
and for different values of
 +
<math>n</math>
 +
we obtain values of
 +
<math>\alpha </math>
 +
which are equal to those above, apart from multiples of
 +
<math>2\pi </math>. Thus, we have four solutions,
 +
 
 +
 
 +
<math>w=\left\{ \begin{array}{*{35}l}
 +
\sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\
 +
\sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\
 +
\sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\
 +
\sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\
 +
\end{array} \right.=\left\{ \begin{array}{*{35}l}
 +
1+i \\
 +
-1+i \\
 +
-1-i \\
 +
1-i \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
and the original variable z is
 +
 
 +
 
 +
<math>z=\left\{ \begin{array}{*{35}l}
 +
2+i \\
 +
i \\
 +
-i \\
 +
2-i \\
 +
\end{array} \right.</math>

Version vom 10:54, 24. Okt. 2008

If we use w=z1 as a new unknown and move the term 4 over to the right-hand side, we have a binomial equation,


w4=4


We can solve this equation in the usual way by using polar form and de Moivre's formula. We have


w=rcos+isin4=4cos+isin 


and the equation becomes


r4cos4+isin4=4cos+isin 


The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of 2,


r4=44=+2nn an arbitrary integer  


which gives us that


r=42=2=4+2nn an arbitrary integer  


for n=0 1 2 and 3, the argument assumes the four different values


4 43 45 and 47


and for different values of n we obtain values of which are equal to those above, apart from multiples of 2. Thus, we have four solutions,


w=2cos4+isin42cos34+isin342cos54+isin542cos74+isin74=1+i1+i1i1i


and the original variable z is


z=2+iii2i