Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:2d moved to Solution 3.3:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we use |
- | < | + | <math>w=z-\text{1}</math> |
- | {{ | + | as a new unknown and move the term |
- | {{ | + | <math>\text{4}</math> |
- | < | + | over to the right-hand side, we have a binomial equation, |
- | {{ | + | |
+ | |||
+ | <math>w^{4}=-4</math> | ||
+ | |||
+ | |||
+ | We can solve this equation in the usual way by using polar form and de Moivre's formula. We have | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & w=r\left( \cos \alpha +i\sin \alpha \right) \\ | ||
+ | & -4=4\left( \cos \pi +i\sin \pi \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and the equation becomes | ||
+ | |||
+ | |||
+ | <math>r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=4\left( \cos \pi +i\sin \pi \right)</math> | ||
+ | |||
+ | |||
+ | The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of | ||
+ | <math>2\pi </math>, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r^{4}=4 \\ | ||
+ | 4\alpha =\pi +2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | which gives us that | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r=\sqrt[4]{2}=\sqrt{2} \\ | ||
+ | \alpha =\frac{\pi }{4}+\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | for | ||
+ | <math>n=0,\ 1,\ 2</math> | ||
+ | and | ||
+ | <math>3</math>, the argument | ||
+ | <math>\alpha </math> | ||
+ | assumes the four different values | ||
+ | |||
+ | |||
+ | <math>\frac{\pi }{4},\ \frac{3\pi }{4},\ \frac{5\pi }{4}</math> | ||
+ | and | ||
+ | <math>\frac{7\pi }{4}</math> | ||
+ | |||
+ | |||
+ | and for different values of | ||
+ | <math>n</math> | ||
+ | we obtain values of | ||
+ | <math>\alpha </math> | ||
+ | which are equal to those above, apart from multiples of | ||
+ | <math>2\pi </math>. Thus, we have four solutions, | ||
+ | |||
+ | |||
+ | <math>w=\left\{ \begin{array}{*{35}l} | ||
+ | \sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\ | ||
+ | \end{array} \right.=\left\{ \begin{array}{*{35}l} | ||
+ | 1+i \\ | ||
+ | -1+i \\ | ||
+ | -1-i \\ | ||
+ | 1-i \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | and the original variable z is | ||
+ | |||
+ | |||
+ | <math>z=\left\{ \begin{array}{*{35}l} | ||
+ | 2+i \\ | ||
+ | i \\ | ||
+ | -i \\ | ||
+ | 2-i \\ | ||
+ | \end{array} \right.</math> |
Version vom 10:54, 24. Okt. 2008
If we use
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
cos
+isin
−4=4
cos
+isin
and the equation becomes
cos4
+isin4
=4
cos
+isin
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
r4=44
=
+2n
n an arbitrary integer
which gives us that
r=
42=
2
=
4+2n
n an arbitrary integer
for
1
2
4
43
45
and for different values of
2
cos
4+isin
4
2
cos3
4+isin3
4
2
cos5
4+isin5
4
2
cos7
4+isin7
4
=
1+i−1+i−1−i1−i
and the original variable z is
2+ii−i2−i