Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:5d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:5d moved to Solution 3.3:5d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Let us first divide both sides by
-
<center> [[Image:3_3_5d-1(5).gif]] </center>
+
<math>4+i</math>, so that the coefficient in front of
-
{{NAVCONTENT_STOP}}
+
<math>z^{2}</math>
-
{{NAVCONTENT_START}}
+
becomes
-
<center> [[Image:3_3_5d-2(5).gif]] </center>
+
<math>\text{1}</math>,
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_5d-3(5).gif]] </center>
+
<math>z^{2}+\frac{1-21i}{4+i}z=\frac{17}{4+i}</math>
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_5d-4(5).gif]] </center>
+
The two complex quotients become
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_5d-5(5).gif]] </center>
+
<math>\begin{align}
-
{{NAVCONTENT_STOP}}
+
& \frac{\left( 1-21i \right)\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{4-i-84i+21i^{2}}{4^{2}-i^{2}} \\
 +
& =\frac{-17-85i}{16+1}=\frac{-17-85i}{17}=-1-5i \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{17}{4+i}=\frac{17\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{17\left( 4-i \right)}{4^{2}-i^{2}} \\
 +
& =\frac{17\left( 4-i \right)}{17}=4-i \\
 +
\end{align}</math>
 +
 
 +
 
 +
Thus, the equation becomes
 +
 
 +
 
 +
<math>z^{2}-\left( 1+5i \right)z=4-i</math>
 +
 
 +
 
 +
Now, we complete the square of the left-hand side:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1+5i}{2} \right)^{2}=4-i \\
 +
& \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{5}{2}i+\frac{25}{4}i^{2} \right)=4-i \\
 +
& \left( z-\frac{1+5i}{2} \right)^{2}-\frac{1}{4}-\frac{5}{2}i+\frac{25}{4}=4-i \\
 +
& \left( z-\frac{1+5i}{2} \right)^{2}=-2+\frac{3}{2}i \\
 +
\end{align}</math>
 +
 
 +
 
 +
If we set
 +
<math>w=z-\frac{1+5i}{2}</math>, we have a binomial equation in
 +
<math>w</math>,
 +
 
 +
 
 +
<math>w^{2}=-2+\frac{3}{2}i</math>
 +
 
 +
 +
which we solve by putting
 +
<math>w=x+iy\text{ }</math>,
 +
 
 +
 
 +
<math>\left( x+iy \right)^{2}=-2+\frac{3}{2}i</math>
 +
 
 +
 
 +
or, if the left-hand side is expanded,
 +
 
 +
 
 +
<math>x^{2}-y^{2}+2xyi=-2+\frac{3}{2}i</math>
 +
 
 +
 
 +
If we identify the real and imaginary parts on both sides, we get
 +
 
 +
 
 +
<math>\begin{align}
 +
& x^{2}-y^{2}=-2 \\
 +
& 2xy=\frac{3}{2} \\
 +
\end{align}</math>
 +
 
 +
 
 +
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
 +
 
 +
 
 +
<math>x^{2}+y^{2}=\sqrt{\left( -2 \right)^{2}+\left( \frac{3}{2} \right)^{2}}=\frac{5}{2}</math>
 +
 
 +
 
 +
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
 +
 
 +
Together, the three relations constitute the following system of equations:
 +
 
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
\ x^{2}-y^{2}=2 \\
 +
\ 2xy=-\frac{3}{2} \\
 +
\ x^{2}+y^{2}=\frac{5}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
 
 +
From the first and the third equations, we can relatively easily obtain the values that
 +
<math>x</math>
 +
and
 +
<math>y</math>
 +
can take.
 +
 
 +
Add the first and third equations,
 +
 
 +
EQ1
 +
 
 +
which gives that
 +
<math>x=\pm \frac{1}{2}</math>.
 +
 
 +
Then, subtract the first equation from the third equation,
 +
 
 +
EQ13
 +
 
 +
i.e.
 +
<math>y=\pm \frac{3}{2}</math>.
 +
 
 +
This gives four possible combinations,
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{1}{2} \\
 +
y=\frac{3}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=\frac{1}{2} \\
 +
y=-\frac{3}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{1}{2} \\
 +
y=\frac{3}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{1}{2} \\
 +
y=-\frac{3}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
of which only two also satisfy the second equation.
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{1}{2} \\
 +
y=\frac{3}{2} \\
 +
\end{array} \right.\quad \quad \text{and}\quad \quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{1}{2} \\
 +
y=-\frac{3}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
This means that the binomial equation has the two solutions,
 +
 
 +
 
 +
 
 +
<math>w=\frac{1}{2}+\frac{3}{2}i</math>
 +
and
 +
<math>w=\frac{1}{-2}-\frac{3}{2}i</math>
 +
 
 +
 
 +
and that the original equation has the solutions
 +
 
 +
 
 +
<math>z=1+4i</math>
 +
and
 +
<math>z=i</math>
 +
 
 +
according to the relation
 +
<math>w=z-\frac{1+5i}{2}</math>.
 +
 
 +
Finally, we check that the solutions really do satisfy the equation.
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& 1+4i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\
 +
& =\left( 4+i \right)\left( 1+4i \right)^{2}+\left( 1-21i \right)\left( 1+4i \right) \\
 +
& =\left( 4+i \right)\left( 1+8i+16i^{2} \right)+\left( 1+4i-21i-84i^{2} \right) \\
 +
& =\left( 4+i \right)\left( -15+8i \right)+1-17i+84 \\
 +
& =-60+32i-15i+8i^{2}+1-17i+84 \\
 +
& =-60+32i-15i-8+1-17i+84=17 \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\
 +
& =\left( 4+i \right)i^{2}+\left( 1-21i \right)i \\
 +
& =\left( 4+i \right)\left( -1 \right)+i-21i^{2} \\
 +
& =-4-i+i+21=17 \\
 +
\end{align}</math>

Version vom 11:32, 26. Okt. 2008

Let us first divide both sides by 4+i, so that the coefficient in front of z2 becomes 1,


z2+4+i121iz=174+i


The two complex quotients become


4+i4i121i4i=42i24i84i+21i2=16+11785i=171785i=15i


174+i=174i4+i4i=42i2174i=17174i=4i


Thus, the equation becomes


z21+5iz=4i 


Now, we complete the square of the left-hand side:


z21+5i221+5i2=4iz21+5i241+25i+425i2=4iz21+5i24125i+425=4iz21+5i2=2+23i


If we set w=z21+5i, we have a binomial equation in w,


w2=2+23i


which we solve by putting w=x+iy ,


x+iy2=2+23i 


or, if the left-hand side is expanded,


x2y2+2xyi=2+23i


If we identify the real and imaginary parts on both sides, we get


x2y2=22xy=23


and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:


x2+y2=22+232=25 


Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.

Together, the three relations constitute the following system of equations:


 x2y2=2 2xy=23 x2+y2=25


From the first and the third equations, we can relatively easily obtain the values that x and y can take.

Add the first and third equations,

EQ1

which gives that x=21.

Then, subtract the first equation from the third equation,

EQ13

i.e. y=23.

This gives four possible combinations,


x=21y=23x=21y=23x=21y=23x=21y=23 


of which only two also satisfy the second equation.


x=21y=23andx=21y=23 


This means that the binomial equation has the two solutions,


w=21+23i and w=1223i


and that the original equation has the solutions


z=1+4i and z=i

according to the relation w=z21+5i.

Finally, we check that the solutions really do satisfy the equation.


1+4i:4+iz2+121iz=4+i1+4i2+121i1+4i=4+i1+8i+16i2+1+4i21i84i2=4+i15+8i+117i+84=60+32i15i+8i2+117i+84=60+32i15i8+117i+84=17


z=i:4+iz2+121iz=4+ii2+121ii=4+i1+i21i2=4i+i+21=17