Processing Math: Done
Lösung 3.3:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.3:3b moved to Solution 3.3:3b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | |
- | < | + | |
- | {{ | + | When we complete the square, we replace all |
+ | <math>z</math> | ||
+ | -terms in the second-degree expression with a quadratic term which contains | ||
+ | <math>z</math>, according to the formula | ||
+ | |||
+ | |||
+ | <math>z^{2}+az=\left( z+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math> | ||
+ | |||
+ | |||
+ | In our case, we set | ||
+ | <math>a=\text{3}i\text{ }</math> | ||
+ | in order to complete the square: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z^{2}+3iz-\frac{1}{4}=\left( z+\frac{3}{2}i \right)^{2}-\left( \frac{3}{2}i \right)^{2}-\frac{1}{4} \\ | ||
+ | & =\left( z+\frac{3}{2}i \right)^{2}-\frac{9}{4}\left( -1 \right)-\frac{1}{4} \\ | ||
+ | & =\left( z+\frac{3}{2}i \right)^{2}+2 \\ | ||
+ | \end{align}</math> |
Version vom 10:02, 28. Okt. 2008
When we complete the square, we replace all
z+2a
2−
2a
2
In our case, we set
z+23i
2−
23i
2−41=
z+23i
2−49
−1
−41=
z+23i
2+2