Lösung 3.4:4
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:4 moved to Solution 3.4:4: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because |
- | < | + | <math>z=\text{1}-\text{2}i</math> |
- | {{ | + | should be a root of the equation, we can substitute |
+ | <math>z=\text{1}-\text{2}i</math> | ||
+ | in and the equation should be satisfied: | ||
+ | |||
+ | |||
+ | <math>\left( \text{1}-\text{2}i \right)^{3}+a\left( \text{1}-\text{2}i \right)+b=0</math> | ||
+ | |||
+ | |||
+ | We will therefore adjust the constants | ||
+ | <math>a</math> | ||
+ | and | ||
+ | <math>b</math> | ||
+ | so that the relation above holds. We simplify the left-hand side, | ||
+ | |||
+ | |||
+ | <math>-11+2i+a\left( \text{1}-\text{2}i \right)+b=0</math> | ||
+ | |||
+ | |||
+ | and collect together the real and imaginary parts: | ||
+ | |||
+ | |||
+ | <math>\left( -11+a+b \right)+\left( 2-2a \right)i=0</math> | ||
+ | |||
+ | |||
+ | If the left-hand side is to equal the right-hand side, the left-hand side's real and imaginary parts must be equal to zero, i.e. | ||
+ | |||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | -11+a+b=0 \\ | ||
+ | 2-2a=0 \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | This gives | ||
+ | <math>a=\text{1}</math> | ||
+ | and | ||
+ | <math>b=\text{1}0</math>. | ||
+ | |||
+ | The equation is thus | ||
+ | |||
+ | |||
+ | <math>z^{2}+z+10=0</math> | ||
+ | |||
+ | |||
+ | and has the prescribed root | ||
+ | <math>z=\text{1}-\text{2}i</math>. | ||
+ | |||
+ | What we have is a polynomial with real coefficients and we therefore know that the equation has, in addition, the complex conjugate root | ||
+ | <math>z=\text{1}+\text{2}i</math>. | ||
+ | |||
+ | Hence, we know two of the equation's three roots and we can obtain the third root with help of the factor theorem. According to the factor theorem, the equation's left-hand side contains the factor | ||
+ | |||
+ | |||
+ | <math>\left( z-\left( 1-2i \right) \right)\left( z-\left( 1+2i \right) \right)=z^{2}-2z+5</math> | ||
+ | |||
+ | |||
+ | and this means that we can write | ||
+ | |||
+ | |||
+ | <math>z^{3}+z+10=\left( z-A \right)\left( z^{2}-2z+5 \right)</math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>z-A</math> | ||
+ | is the factor which corresponds to the third root | ||
+ | <math>z=A</math>. Using polynomial division, we obtain the factor | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z-A=\frac{z^{3}+z+10}{z^{2}-2z+5} \\ | ||
+ | & =\frac{z^{3}-2z^{2}+5z+2z^{2}-5z+z+10}{z^{2}-2z+5} \\ | ||
+ | & =\frac{z\left( z^{2}-2z+5 \right)+2z^{2}-4z+10}{z^{2}-2z+5} \\ | ||
+ | & =z+\frac{2z^{2}-4z+10}{z^{2}-2z+5} \\ | ||
+ | & =z+\frac{2\left( z^{2}-2z+5 \right)}{z^{2}-2z+5} \\ | ||
+ | & =z+2 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, the remaining root is | ||
+ | <math>z=-\text{2}</math>. |
Version vom 13:32, 28. Okt. 2008
Because \displaystyle z=\text{1}-\text{2}i should be a root of the equation, we can substitute \displaystyle z=\text{1}-\text{2}i in and the equation should be satisfied:
\displaystyle \left( \text{1}-\text{2}i \right)^{3}+a\left( \text{1}-\text{2}i \right)+b=0
We will therefore adjust the constants
\displaystyle a
and
\displaystyle b
so that the relation above holds. We simplify the left-hand side,
\displaystyle -11+2i+a\left( \text{1}-\text{2}i \right)+b=0
and collect together the real and imaginary parts:
\displaystyle \left( -11+a+b \right)+\left( 2-2a \right)i=0
If the left-hand side is to equal the right-hand side, the left-hand side's real and imaginary parts must be equal to zero, i.e.
\displaystyle \left\{ \begin{array}{*{35}l} -11+a+b=0 \\ 2-2a=0 \\ \end{array} \right.
This gives
\displaystyle a=\text{1}
and
\displaystyle b=\text{1}0.
The equation is thus
\displaystyle z^{2}+z+10=0
and has the prescribed root
\displaystyle z=\text{1}-\text{2}i.
What we have is a polynomial with real coefficients and we therefore know that the equation has, in addition, the complex conjugate root \displaystyle z=\text{1}+\text{2}i.
Hence, we know two of the equation's three roots and we can obtain the third root with help of the factor theorem. According to the factor theorem, the equation's left-hand side contains the factor
\displaystyle \left( z-\left( 1-2i \right) \right)\left( z-\left( 1+2i \right) \right)=z^{2}-2z+5
and this means that we can write
\displaystyle z^{3}+z+10=\left( z-A \right)\left( z^{2}-2z+5 \right)
where
\displaystyle z-A
is the factor which corresponds to the third root
\displaystyle z=A. Using polynomial division, we obtain the factor
\displaystyle \begin{align}
& z-A=\frac{z^{3}+z+10}{z^{2}-2z+5} \\
& =\frac{z^{3}-2z^{2}+5z+2z^{2}-5z+z+10}{z^{2}-2z+5} \\
& =\frac{z\left( z^{2}-2z+5 \right)+2z^{2}-4z+10}{z^{2}-2z+5} \\
& =z+\frac{2z^{2}-4z+10}{z^{2}-2z+5} \\
& =z+\frac{2\left( z^{2}-2z+5 \right)}{z^{2}-2z+5} \\
& =z+2 \\
\end{align}
Thus, the remaining root is
\displaystyle z=-\text{2}.