Lösung 3.3:6
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:6 moved to Solution 3.3:6: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We take up the exercise's challenge and solve the equation both in polar form and in the form a+ib. |
- | < | + | |
- | {{ | + | Polar form |
- | {{ | + | |
- | + | In polar form, | |
- | {{ | + | |
- | {{ | + | |
- | + | <math>\begin{align} | |
- | {{ | + | & z=r\left( \cos \alpha +i\sin \alpha \right) \\ |
- | {{ | + | & 1+i=\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ |
- | < | + | \end{align}</math> |
- | {{ | + | |
- | {{ | + | |
- | + | and, using de Moivre's formula, the equation becomes | |
- | {{ | + | |
+ | |||
+ | <math>r^{2}\left( \cos 2\alpha +i\sin 2\alpha \right)=\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right)</math> | ||
+ | |||
+ | |||
+ | If both sides are to be equal, their magnitudes must be equal and their arguments must be equal, other than for multiples of | ||
+ | <math>2\pi </math>, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r^{2}=\sqrt{2} \\ | ||
+ | 2\alpha =\frac{\pi }{4}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | This gives | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r=\sqrt{\sqrt{2}}=\left( 2^{{1}/{2}\;} \right)^{{1}/{2}\;}=2^{{1}/{4}\;}=\sqrt[4]{2} \\ | ||
+ | \alpha =\frac{\pi }{8}+n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | which corresponds two solutions, because all even values of | ||
+ | <math>n</math> | ||
+ | give the argument | ||
+ | <math>\frac{\pi }{8}</math>, to within multiples of | ||
+ | <math>2\pi </math>, and all odd values of | ||
+ | <math>n</math> | ||
+ | give the argument | ||
+ | <math>\frac{9\pi }{8}</math>, to within a multiples of | ||
+ | <math>2\pi </math>. | ||
+ | |||
+ | Thus, in polar form, we have the solutions, | ||
+ | |||
+ | |||
+ | <math>z=\left\{ \begin{array}{*{35}l} | ||
+ | \sqrt[4]{2}\left( \cos \frac{\pi }{8}+i\sin \frac{\pi }{8} \right) \\ | ||
+ | \sqrt[4]{2}\left( \cos \frac{9\pi }{8}+i\sin \frac{9\pi }{8} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | One solution | ||
+ | <math>z=\sqrt[4]{2}\left( \cos \frac{\pi }{8}+i\sin \frac{\pi }{8} \right)</math> | ||
+ | lies in the first quadrant and the second solution | ||
+ | <math>z=\sqrt[4]{2}\left( \cos \frac{9\pi }{8}+i\sin \frac{9\pi }{8} \right)</math> | ||
+ | lies in the third quadrant. | ||
+ | |||
[[Image:3_3_6.gif|center]] | [[Image:3_3_6.gif|center]] | ||
+ | |||
+ | Rectangular form | ||
+ | |||
+ | The alternative way to solve the equation is to put | ||
+ | <math>z=x+iy</math> | ||
+ | and to try to solve the equation for | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math>. | ||
+ | |||
+ | If | ||
+ | <math>z=x+iy</math>, the equation becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x+iy \right)^{2}=1+i \\ | ||
+ | & x^{2}-y^{2}+2xyi=1+i \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Because both sides' real and imaginary parts must equal each other, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-y^{2}=1 \\ | ||
+ | & 2xy=1 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | All the information for determining | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math> | ||
+ | is in these two equations, but it will make things easier if we include an extra relation: the magnitude of both sides should be equal, | ||
+ | |||
+ | |||
+ | <math>x^{2}+y^{2}=\sqrt{1^{2}+1^{2}}=\sqrt{2}</math> | ||
+ | |||
+ | |||
+ | Therefore, we have in total three equations, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x^{2}-y^{2}=1\, \\ | ||
+ | 2xy=1 \\ | ||
+ | x^{2}+y^{2}=\sqrt{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | If we add the first and the third equations, | ||
+ | |||
+ | EQ1 | ||
+ | |||
+ | we get that | ||
+ | <math>x</math> | ||
+ | must be equal to | ||
+ | |||
+ | |||
+ | <math>x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}</math> | ||
+ | |||
+ | |||
+ | If we subtract the first equation from the third equation, | ||
+ | |||
+ | EQ2 | ||
+ | |||
+ | we obtain that | ||
+ | <math>y</math> | ||
+ | must be equal to | ||
+ | |||
+ | |||
+ | <math>y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}</math> | ||
+ | |||
+ | |||
+ | All in all, this gives us four possible solutions | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=-\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=-\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | although we have only taken account of the first and third equations. | ||
+ | |||
+ | The second equation says that the product | ||
+ | <math>xy</math> | ||
+ | should be positive and then we can directly get rid of solutions in which | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math> | ||
+ | have different signs. Thus, all that is left is | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.\quad \quad \text{and}\quad \quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | y=-\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | Now, we know already that the equation has two solutions, so we can draw the conclusion that these are | ||
+ | |||
+ | |||
+ | <math>z=\left\{ \begin{array}{*{35}l} | ||
+ | \sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | -\sqrt{\frac{\sqrt{2}+1}{2}}-i\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | If we compare the solution in the first quadrant when it is expressed in polar and rectangular forms, we have | ||
+ | |||
+ | |||
+ | <math>\sqrt[4]{2}\left( \cos \frac{\pi }{8}+i\sin \frac{\pi }{8} \right)=\sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}</math> | ||
+ | |||
+ | and therefore we must have that | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \cos \frac{\pi }{8}=\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}} \\ | ||
+ | & \sin \frac{\pi }{8}=\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Thus, we have | ||
+ | |||
+ | |||
+ | <math>\tan \frac{\pi }{8}=\frac{\sin \frac{\pi }{8}}{\cos \frac{\pi }{8}}=\frac{\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}}}{\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}}}=\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | We can simplify the expression under the root sign by multiplying top and bottom by the conjugate of the denominator: | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \tan \frac{\pi }{8}=\sqrt{\frac{\left( \sqrt{2}-1 \right)\left( \sqrt{2}-1 \right)}{\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)}}=\sqrt{\frac{\left( \sqrt{2}-1 \right)^{2}}{\left( \sqrt{2} \right)^{2}-1^{2}}} \\ | ||
+ | & =\sqrt{\frac{\left( \sqrt{2}-1 \right)^{2}}{2-1}}=\sqrt{\left( \sqrt{2}-1 \right)^{2}}=\sqrt{2}-1 \\ | ||
+ | \end{align}</math> |
Version vom 12:02, 2. Nov. 2008
We take up the exercise's challenge and solve the equation both in polar form and in the form a+ib.
Polar form
In polar form,
cos
+isin
1+i=
2
cos
4+isin
4
and, using de Moivre's formula, the equation becomes
cos2
+isin2
=
2
cos
4+isin
4
If both sides are to be equal, their magnitudes must be equal and their arguments must be equal, other than for multiples of
r2=
22
=
4+2n
n an arbitrary integer
This gives
r=
2=
21
2
1
2=21
4=
42
=
8+n
n an arbitrary integer
which corresponds two solutions, because all even values of
8
Thus, in polar form, we have the solutions,
42
cos
8+isin
8
42
cos89
+isin89
One solution
42
cos
8+isin
8
42
cos89
+isin89
Rectangular form
The alternative way to solve the equation is to put
If
x+iy
2=1+ix2−y2+2xyi=1+i
Because both sides' real and imaginary parts must equal each other,
All the information for determining
12+12=
2
Therefore, we have in total three equations,
x2−y2=12xy=1x2+y2=
2
If we add the first and the third equations,
EQ1
we get that
2
2+1
If we subtract the first equation from the third equation,
EQ2
we obtain that
2
2−1
All in all, this gives us four possible solutions
x=
2
2+1y=
2
2−1
x=
2
2+1y=−
2
2−1
x=−
2
2+1y=
2
2−1
x=−
2
2+1y=−
2
2−1
although we have only taken account of the first and third equations.
The second equation says that the product
\displaystyle \left\{ \begin{array}{*{35}l}
x=\sqrt{\frac{\sqrt{2}+1}{2}} \\
y=\sqrt{\frac{\sqrt{2}-1}{2}} \\
\end{array} \right.\quad \quad \text{and}\quad \quad \left\{ \begin{array}{*{35}l}
x=-\sqrt{\frac{\sqrt{2}+1}{2}} \\
y=-\sqrt{\frac{\sqrt{2}-1}{2}} \\
\end{array} \right.
Now, we know already that the equation has two solutions, so we can draw the conclusion that these are
\displaystyle z=\left\{ \begin{array}{*{35}l}
\sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}} \\
-\sqrt{\frac{\sqrt{2}+1}{2}}-i\sqrt{\frac{\sqrt{2}-1}{2}} \\
\end{array} \right.
If we compare the solution in the first quadrant when it is expressed in polar and rectangular forms, we have
\displaystyle \sqrt[4]{2}\left( \cos \frac{\pi }{8}+i\sin \frac{\pi }{8} \right)=\sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}
and therefore we must have that
\displaystyle \begin{align} & \cos \frac{\pi }{8}=\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}} \\ & \sin \frac{\pi }{8}=\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}} \\ \end{align}
Thus, we have
\displaystyle \tan \frac{\pi }{8}=\frac{\sin \frac{\pi }{8}}{\cos \frac{\pi }{8}}=\frac{\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}}}{\frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}}}=\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}
We can simplify the expression under the root sign by multiplying top and bottom by the conjugate of the denominator:
\displaystyle \begin{align} & \tan \frac{\pi }{8}=\sqrt{\frac{\left( \sqrt{2}-1 \right)\left( \sqrt{2}-1 \right)}{\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)}}=\sqrt{\frac{\left( \sqrt{2}-1 \right)^{2}}{\left( \sqrt{2} \right)^{2}-1^{2}}} \\ & =\sqrt{\frac{\left( \sqrt{2}-1 \right)^{2}}{2-1}}=\sqrt{\left( \sqrt{2}-1 \right)^{2}}=\sqrt{2}-1 \\ \end{align}