Processing Math: 53%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:6

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Solution 3.3:6 moved to Lösung 3.3:6: Robot: moved page)
Zeile 1: Zeile 1:
-
We take up the exercise's challenge and solve the equation both in polar form and in the form <math>a+ib</math>.
 
- 
- 
'''Polar form'''
'''Polar form'''
-
In polar form,
+
Wir lösen die Gleichung zuerst in Polarform,
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 11: Zeile 8:
\end{align}</math>}}
\end{align}</math>}}
-
and, using de Moivre's formula, the equation becomes
+
und durch den Moivrischen Satz erhalten wir die Gleichung
{{Abgesetzte Formel||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = \sqrt{2}\Bigl(\cos \frac{\pi}{4} + i\sin\frac{\pi}{4}\Bigr)\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = \sqrt{2}\Bigl(\cos \frac{\pi}{4} + i\sin\frac{\pi}{4}\Bigr)\,\textrm{.}</math>}}
-
If both sides are to be equal, their magnitudes must be equal and their arguments must be equal, other than for multiples of <math>2\pi</math>,
+
Damit die beiden Seiten gleich sein sollen. müssen die Beträge der beiden Seiten gleich sein und die Argumente der beiden Seiten dürfen sich nur mit einen Multipel von <math>2\pi</math> unterscheiden,
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 22: Zeile 19:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
This gives
+
Dies ergibt
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 29: Zeile 26:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
which corresponds two solutions, because all even values of <math>n</math> give the argument <math>\pi/8</math>, to within multiples of <math>2\pi</math>, and all odd values of <math>n</math> give the argument <math>9\pi/8</math>, to within a multiple of <math>2\pi</math>.
+
Dies entspricht zwei Lösungen, nachdem alle geraden Zahlen das Argument <math>\pi/8</math> entsprechen, plus einen Multipel von <math>2\pi</math>, und alle ungerade Zahlen das Argument <math>9\pi/8</math> entsprechen, plus einen Multipel von <math>2\pi</math>.
-
Thus, in polar form, we have the solutions,
+
In Polarform lauten die Lösungen also
{{Abgesetzte Formel||<math>z = \left\{\begin{align}
{{Abgesetzte Formel||<math>z = \left\{\begin{align}
Zeile 38: Zeile 35:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
One solution <math>z=\sqrt[4]{2}(\cos (\pi/8) + i\sin (\pi/8)</math> lies in the first quadrant and the second solution <math>z=\sqrt[4]{2}(\cos (9\pi/8) + i\sin (9\pi/8))</math> lies in the third quadrant.
+
 
 +
Eine Lösung, <math>z=\sqrt[4]{2}(\cos (\pi/8) + i\sin (\pi/8)</math> liegt im ersten Quadrant, und die zweite Lösung, <math>z=\sqrt[4]{2}(\cos (9\pi/8) + i\sin (9\pi/8))</math> liegt im dritten Quadrant.
[[Image:3_3_6.gif|center]]
[[Image:3_3_6.gif|center]]
-
'''Rectangular form'''
+
''' Auf der Form ''a'' + ''bi'' '''
-
The alternative way to solve the equation is to put <math>z=x+iy</math> and to try to solve the equation for <math>x</math> and <math>y</math>.
+
Wir schreiben hier <math>z=x+iy</math> und versuchen die Konstanten <math>x</math> und <math>y</math> zu bestimmen.
-
If <math>z=x+iy</math>, the equation becomes
+
Mit <math>z=x+iy</math>, erhalten wir die Gleichung
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 54: Zeile 52:
\end{align}</math>}}
\end{align}</math>}}
-
Because both sides' real and imaginary parts must equal each other we have that
+
Nachdem der Real- und Imaginärteil der beiden Seiten gleich sein muss, erhalten wir
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 61: Zeile 59:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
All the information we need for determining <math>x</math> and <math>y</math> is in these two equations, but it will make things easier if we include an extra relation: the magnitude of both sides should be equal,
+
Wir können hier <math>x</math> und <math>y</math> direkt bestimmen, aber um es einfacher zu machen, berechnen wir den Betrag von beiden Seiten,
{{Abgesetzte Formel||<math>x^2 + y^2 = \sqrt{1^2+1^2} = \sqrt{2}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x^2 + y^2 = \sqrt{1^2+1^2} = \sqrt{2}\,\textrm{.}</math>}}
-
Therefore, we have in total three equations,
+
und wir erhalten insgesamt dre Gleihungen,
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 73: Zeile 71:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
If we add the first and the third equations,
+
Addieren wir die erste Gleichung zur dritten erhalten wir
{| align="center" style="padding:10px 0px 10px 0px;"
{| align="center" style="padding:10px 0px 10px 0px;"
||
||
Zeile 99: Zeile 97:
|}
|}
-
we get that <math>x</math> must be equal to
+
und wir erhalten;
{{Abgesetzte Formel||<math>x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}\,\textrm{.}</math>}}
-
If we subtract the first equation from the third equation,
+
Subtrahieren wir die erste Gleichung von der dritten erhalten wir,
{| align="center" style="padding:10px 0px 10px 0px;"
{| align="center" style="padding:10px 0px 10px 0px;"
||
||
Zeile 129: Zeile 127:
|}
|}
-
we obtain that <math>y</math> must be equal to
+
und wir erhalten;
{{Abgesetzte Formel||<math>y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.}</math>}}
-
All in all, this gives us four possible solutions
+
Insgesamt haben wir also vier mögliche Lösungen
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 155: Zeile 153:
\end{align} \right.</math>}}
\end{align} \right.</math>}}
-
although we have only taken account of the first and third equations.
+
Die zweite Gleichung sagt dass <math>xy</math> positiv sein soll, und wir behalten daher nur die Gleichungen
-
 
+
-
The second equation says that the product <math>xy</math> should be positive and then we can directly get rid of solutions in which <math>x</math> and <math>y</math>
+
-
have different signs. Thus, all that is left is
+
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 170: Zeile 165:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
Now, we know already that the equation has two solutions, so we can draw the conclusion that these are
+
Nachdem wir wissen dass unsere Gleichung zwei Lösungen hat, müssen dies unsere Lösungen sein:
{{Abgesetzte Formel||<math>z = \left\{\begin{align}
{{Abgesetzte Formel||<math>z = \left\{\begin{align}
Zeile 177: Zeile 172:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
If we compare the solution in the first quadrant when it is expressed in polar and rectangular forms, we have
+
Vergleichen wir diese Lösungen mit den Lösungen in Polarform, erhalten wir
{{Abgesetzte Formel||<math>\sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \Bigr) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}</math>}}
{{Abgesetzte Formel||<math>\sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \Bigr) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}</math>}}
-
and therefore we must have that
+
und daher ist
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 188: Zeile 183:
\end{align}</math>}}
\end{align}</math>}}
-
Thus, we have
+
und wir erhalten auch
{{Abgesetzte Formel||<math>\tan\frac{\pi}{8} = \frac{\sin\dfrac{\pi}{8}}{\cos\dfrac{\pi}{8}} = \frac{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}-1}{2}}}{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}+1}{2}}} = \sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\tan\frac{\pi}{8} = \frac{\sin\dfrac{\pi}{8}}{\cos\dfrac{\pi}{8}} = \frac{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}-1}{2}}}{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}+1}{2}}} = \sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\,\textrm{.}</math>}}
-
We can simplify the expression under the square root sign by multiplying top and bottom by the conjugate of the denominator,
+
Wir können diesen Ausdruck vereinfachen, indem wir den Ausdruck mit den konjugieren Nenner erweitern,
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Version vom 18:00, 18. Mai 2009

Polar form

Wir lösen die Gleichung zuerst in Polarform,

z1+i=r(cos+isin)=2cos4+isin4 

und durch den Moivrischen Satz erhalten wir die Gleichung

r2(cos2+isin2)=2cos4+isin4. 

Damit die beiden Seiten gleich sein sollen. müssen die Beträge der beiden Seiten gleich sein und die Argumente der beiden Seiten dürfen sich nur mit einen Multipel von 2 unterscheiden,

r22=2=4+2n(n is an arbitrary integer).

Dies ergibt

r=2=21212=214=42=8+n(n is an arbitrary integer),

Dies entspricht zwei Lösungen, nachdem alle geraden Zahlen das Argument 8 entsprechen, plus einen Multipel von 2, und alle ungerade Zahlen das Argument 98 entsprechen, plus einen Multipel von 2.

In Polarform lauten die Lösungen also

z=42cos8+isin842cos89+isin89.


Eine Lösung, z=42(cos(8)+isin(8)  liegt im ersten Quadrant, und die zweite Lösung, z=42(cos(98)+isin(98))  liegt im dritten Quadrant.


Auf der Form a + bi

Wir schreiben hier z=x+iy und versuchen die Konstanten x und y zu bestimmen.

Mit z=x+iy, erhalten wir die Gleichung

(x+iy)2x2y2+2xyi=1+i=1+i.

Nachdem der Real- und Imaginärteil der beiden Seiten gleich sein muss, erhalten wir

x2y22xy=1=1. 

Wir können hier x und y direkt bestimmen, aber um es einfacher zu machen, berechnen wir den Betrag von beiden Seiten,

x2+y2=12+12=2. 

und wir erhalten insgesamt dre Gleihungen,

x2y22xyx2+y2=1=1=2.

Addieren wir die erste Gleichung zur dritten erhalten wir

x2 y2 = 1
+   x2 + y2 = \displaystyle \sqrt{2}

\displaystyle 2x^2 \displaystyle {}={} \displaystyle \sqrt{2}+1

und wir erhalten;

\displaystyle x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}\,\textrm{.}

Subtrahieren wir die erste Gleichung von der dritten erhalten wir,

\displaystyle x^2 \displaystyle {}+{} \displaystyle y^2 \displaystyle {}={} \displaystyle \sqrt{2}
\displaystyle -\ \ \displaystyle \bigl(x^2 \displaystyle {}-{} \displaystyle y^2 \displaystyle {}={} \displaystyle 1\bigr)

\displaystyle 2y^2 \displaystyle {}={} \displaystyle \sqrt{2}-1

und wir erhalten;

\displaystyle y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.}

Insgesamt haben wir also vier mögliche Lösungen

\displaystyle \left\{\begin{align}

x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align} \right.

Die zweite Gleichung sagt dass \displaystyle xy positiv sein soll, und wir behalten daher nur die Gleichungen

\displaystyle \left\{\begin{align}

x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right.

Nachdem wir wissen dass unsere Gleichung zwei Lösungen hat, müssen dies unsere Lösungen sein:

\displaystyle z = \left\{\begin{align}

\sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\,,\\[5pt] -\sqrt{\frac{\sqrt{2}+1}{2}} - i\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align}\right.

Vergleichen wir diese Lösungen mit den Lösungen in Polarform, erhalten wir

\displaystyle \sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \Bigr) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}

und daher ist

\displaystyle \begin{align}

\cos\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}}\,,\\[5pt] \sin\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align}

und wir erhalten auch

\displaystyle \tan\frac{\pi}{8} = \frac{\sin\dfrac{\pi}{8}}{\cos\dfrac{\pi}{8}} = \frac{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}-1}{2}}}{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}+1}{2}}} = \sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\,\textrm{.}

Wir können diesen Ausdruck vereinfachen, indem wir den Ausdruck mit den konjugieren Nenner erweitern,

\displaystyle \begin{align}

\tan\frac{\pi}{8} &= \sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}} = \sqrt{\frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2-1^2}}\\[5pt] &= \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2}-1\,\textrm{.} \end{align}