Processing Math: Done
Antwort 1.3:3
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
Zeile 1: | Zeile 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%"| <math>x=0\,</math> (Lokales | + | |width="50%"| <math>x=0\,</math> (Lokales Maximum) |
|b) | |b) | ||
- | |width="50%"| <math>x=-\frac{1}{3}\ln\frac{5}{3}\,</math> (Lokales | + | |width="50%"| <math>x=-\frac{1}{3}\ln\frac{5}{3}\,</math> (Lokales Minimum) |
|- | |- | ||
|- | |- | ||
|c) | |c) | ||
- | |width="50%"| <math>x=1/e\,</math> (Lokales | + | |width="50%"| <math>x=1/e\,</math> (Lokales Minimum) |
|d) | |d) | ||
|width="50%"| | |width="50%"| | ||
- | <math>x=-\sqrt{\sqrt{2}-1}\,</math> (Lokales | + | <math>x=-\sqrt{\sqrt{2}-1}\,</math> (Lokales Maximum) |
- | <math>x=0\,</math> (Lokales | + | <math>x=0\,</math> (Lokales Minimum) |
- | <math>x=\sqrt{\sqrt{2}-1}\,</math> (Lokales | + | <math>x=\sqrt{\sqrt{2}-1}\,</math> (Lokales Maximum) |
|- | |- | ||
|e) | |e) | ||
- | |width="50%"| <math>x=-3\,</math> (Lokales | + | |width="50%"| <math>x=-3\,</math> (Lokales Minimum) |
- | <math>x=-2\,</math> (Lokales | + | <math>x=-2\,</math> (Lokales Maximum) |
- | <math>x=1\,</math> (Lokales | + | <math>x=1\,</math> (Lokales Minimum) |
- | <math>x=3\,</math> (Lokales | + | <math>x=3\,</math> (Lokales Maximum) |
|} | |} |
Aktuelle Version
a) | | b) | |
c) | ![]() | d) |
|
e) | |