Processing Math: 44%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.3:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 5: Zeile 5:
# Endpunkte.
# Endpunkte.
-
Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner null ist. Da der Nenner <math>1+x^{4}</math> ist, ist er immer positiv. Wir leiten die Funktion mit der Quotientenregel ab, um die stationären Punkte zu finden.
+
Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner ungleich null ist. Da der Nenner <math>1+x^{4}</math> ist, ist er immer positiv. Wir leiten die Funktion mit der Quotientenregel ab, um die stationären Punkte zu finden.
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 35: Zeile 35:
\end{align}</math>}}
\end{align}</math>}}
-
Die Lösungen sind <math>t=-1\pm \sqrt{2}</math>. Nur eine dieser Lösungen ist positiv und kann somit <math>x^{2}</math> sein. Also ist <math>t=-1+\sqrt{2}=x^2\,</math>.
+
Die Lösungen sind <math> t=-1\pm \sqrt{2} </math>. Nur eine dieser Lösungen ist positiv und kann somit <math>x^{2}</math> sein. Also ist <math>t=-1+\sqrt{2}=x^2\,</math>.
-
Die Funktion hat also drei stationäre Punkte; <math>x=-\sqrt{\sqrt{2}-1}</math>,
+
Die Funktion hat also drei stationäre Punkte, <math> x=-\sqrt{\sqrt{2}-1} </math>,
-
<math>x=0</math> und <math>x=\sqrt{\sqrt{2}-1}\,</math>.
+
<math> x=0 </math> und <math> x=\sqrt{\sqrt{2}-1}\, </math>.
-
Wir bestimmen deren Charakter, indem wir das Vorzeichen der zweiten Ableitung bestimmen. Wir wissen schon, dass
+
Wir bestimmen deren Charakter, indem wir das Vorzeichen der Ableitung bestimmen. Wir wissen schon, dass
{{Abgesetzte Formel||<math>f^{\,\prime}(x) = \frac{2x\bigl(1-2x^2-x^4\bigr)}{\bigl(1+x^4\bigr)^2}</math>}}
{{Abgesetzte Formel||<math>f^{\,\prime}(x) = \frac{2x\bigl(1-2x^2-x^4\bigr)}{\bigl(1+x^4\bigr)^2}</math>}}
Zeile 62: Zeile 62:
|width="50px" align="center" style="background:#efefef;"| <math>x</math>
|width="50px" align="center" style="background:#efefef;"| <math>x</math>
|width="50px" align="center" style="background:#efefef;"|
|width="50px" align="center" style="background:#efefef;"|
-
|width="50px" align="center" style="background:#efefef;"| <math>-\sqrt{ \sqrt{2} - 1}</math>
+
|width="50px" align="center" style="background:#efefef;"| <math>-\sqrt{ \sqrt{2}-1}</math>
|width="50px" align="center" style="background:#efefef;"|
|width="50px" align="center" style="background:#efefef;"|
|width="50px" align="center" style="background:#efefef;"| <math>0</math>
|width="50px" align="center" style="background:#efefef;"| <math>0</math>

Version vom 19:13, 21. Aug. 2009

Lokale Extrempunkte einer Funktion sind entweder:

  1. stationäre Punkte mit f(x)=0,
  2. singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
  3. Endpunkte.

Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner ungleich null ist. Da der Nenner 1+x4 ist, ist er immer positiv. Wir leiten die Funktion mit der Quotientenregel ab, um die stationären Punkte zu finden.

f(x)=1+x421+x21+x41+x21+x4=1+x422x1+x41+x24x3=1+x422x+2x54x34x5=1+x422x12x2x4

Der Ausdruck ist null, wenn der Zähler null ist. Wir erhalten die Gleichung

2x12x2x4=0. 

Die linke Seite ist null, wenn einer der Faktoren x oder 12x2x4 null ist. Also ist x=0 oder

12x2x4=0.

Die letzte Gleichung lösen wir am einfachsten, wenn wir t=x2 substituieren,

12tt2=0.

Durch quadratische Ergänzung erhalten wir

t2+2t1(t+1)2121(t+1)2=0=0=2

Die Lösungen sind t=12 . Nur eine dieser Lösungen ist positiv und kann somit x2 sein. Also ist t=1+2=x2 .

Die Funktion hat also drei stationäre Punkte, x=21 , x=0 und x=21 .

Wir bestimmen deren Charakter, indem wir das Vorzeichen der Ableitung bestimmen. Wir wissen schon, dass

f(x)=1+x422x12x2x4

und durch quadratische Ergänzung von 12x2x4 (als Gleichung in x2) erhalten wir

12x2x4=12x2+x4=1x2+1212=2x2+12

Die Ableitung ist also

f(x)=1+x422x2x2+12.

Wir betrachten nun die Vorzeichen der einzelnen Faktoren.


x 21  0 21 
2x 0 + \displaystyle + \displaystyle +
\displaystyle 2 - (x^2 + 1)^2 \displaystyle - \displaystyle 0 \displaystyle + \displaystyle + \displaystyle + \displaystyle 0 \displaystyle -
\displaystyle (x^4 + 1)^2 \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle + \displaystyle +

Durch Ausmultiplizieren erhalten wir das Vorzeichen der Ableitung.


\displaystyle x \displaystyle -\sqrt{ \sqrt{2} - 1} \displaystyle 0 \displaystyle \sqrt{ \sqrt{2} - 1}
\displaystyle \insteadof{2 - (x^2 + 1)^2}{f^{\, \prime} (x)} \displaystyle + \displaystyle 0 \displaystyle - \displaystyle 0 \displaystyle + \displaystyle 0 \displaystyle -
\displaystyle f(x) \displaystyle \nearrow \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) \displaystyle \searrow \displaystyle 1 \displaystyle \nearrow \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) \displaystyle \searrow

Die Funktion hat also ein lokales Maximum im Punkt \displaystyle x=\pm \sqrt{\sqrt{2}-1} ind ein lokales Minimum im Punkt \displaystyle x=0.