Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.3:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (17:53, 9. Sep. 2009) (bearbeiten) (rückgängig)
 
Zeile 19: Zeile 19:
{{Abgesetzte Formel||<math>f^{\,\prime\prime}\bigl(e^{-1}\bigr) = \frac{1}{e^{-1}} = e > 0\,.</math>}}
{{Abgesetzte Formel||<math>f^{\,\prime\prime}\bigl(e^{-1}\bigr) = \frac{1}{e^{-1}} = e > 0\,.</math>}}
-
Also ist <math>x=e^{-1}</math> ein lokales Minimum.
+
Also hat die Funktion an der Stelle <math>x=e^{-1}</math> ein lokales Minimum.

Aktuelle Version

Lokale Extremstellen einer Funktion sind entweder:

  1. stationäre Stellen mit f(x)=0,
  2. singuläre Stellen, in denen die Funktion nicht differenzierbarbar ist, oder
  3. Randstellen.

Die Randstellen des Intervalls, in dem die Funktion definiert ist, erhalten wir dadurch, dass lnx nur definiert ist, wenn x0. Daher ist die Funktion in der linken Randstelle des Intervalls nicht definiert, denn (x=0 erfüllt nicht x0), also kann die Bedingung 3 oben keine Extremwerte liefern. Weiterhin ist die Funktion überall differenzierbar, da x und lnx überall differenzierbar sind, also erhalten wir keine Extremwerte mit der zweiten Bedingung.

Nun bleiben nur noch die stationären Stellen. Die Ableitung der Funktion ist

f(x)=1lnx+xx10=lnx+1.

Wir sehen, dass diese Funktion null ist, wenn

lnx=1x=e1.

Wir berechnen die zweite Ableitung, um den Charakter dieser Extremstelle zu bestimmen. f(x)=1x, also ist

fe1=1e1=e0 

Also hat die Funktion an der Stelle x=e1 ein lokales Minimum.