Lösung 1.2:2e
Aus Online Mathematik Brückenkurs 2
One way to differentiate the expression could be to expand
2x+1
4
To begin with, we have a product of
2x+1
4
\displaystyle \begin{align}
& \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( x \right)^{\prime }\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\
& =1\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\
\end{align}
We can differentiate the expression \displaystyle \left( 2x+1 \right)^{4} by viewing it as "something raised to the \displaystyle \text{4}",
\displaystyle \left\{ \left. {} \right\} \right.^{4}.
The chain rule then gives
\displaystyle \begin{align}
& \frac{d}{dx}\left\{ \left. {} \right\} \right.^{4}=4\centerdot \left\{ \left. {} \right\} \right.^{3}\centerdot \left( \left\{ \left. {} \right\} \right. \right)^{\prime } \\
& \frac{d}{dx}\left( 2x+1 \right)^{4}=4\centerdot \left( 2x+1 \right)^{3}\centerdot \left( 2x+1 \right)^{\prime } \\
\end{align}
We carry out the last differentiation directly, and obtain
\displaystyle \left( 2x+1 \right)^{\prime }=2
If we go through the whole calculation from the beginning, it is
\displaystyle \begin{align}
& \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( x \right)^{\prime }\centerdot \left( 2x+1 \right)^{4}+x\centerdot \left( \left( 2x+1 \right)^{4} \right)^{\prime } \\
& =1\centerdot \left( 2x+1 \right)^{4}+x\centerdot 4\left( 2x+1 \right)^{3}\centerdot \left( 2x+1 \right)^{\prime } \\
& =\left( 2x+1 \right)^{4}+x\centerdot 4\left( 2x+1 \right)^{3}\centerdot 2 \\
& =\left( 2x+1 \right)^{4}+8x\left( 2x+1 \right)^{3} \\
\end{align}
Both terms contain a common factor
\displaystyle \left( 2x+1 \right)^{3}
which we can take out to get an answer in factorized form:
\displaystyle \begin{align}
& \frac{d}{dx}x\left( 2x+1 \right)^{4}=\left( 2x+1 \right)^{3}\left( \left( 2x+1 \right)+8x \right) \\
& =\left( 2x+1 \right)^{3}\left( 10x+1 \right) \\
\end{align}