Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
If we use
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
![]() ![]() ![]() ![]() ![]() ![]() |
and the equation becomes
![]() ![]() ![]() ![]() |
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
![]() ![]() ![]() ![]() ![]() ![]() |
which gives us that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
For 1
![]() ![]() ![]() ![]() ![]() |
and for other values of \displaystyle n we obtain values of \displaystyle \alpha which are equal to those above, apart from multiples of \displaystyle 2\pi. Thus, we have four solutions,
\displaystyle w=\left\{\begin{align}
&\sqrt{2}\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} 1+i\,,&\\[5pt] -1+i\,,&\\[5pt] -1-i\,,&\\[5pt] 1-i\,\textrm{,} \end{align}\right. |
and the original variable z is
\displaystyle z=\left\{\begin{align}
&2+i\,,\\[5pt] &i\,,\\[5pt] &-i\,,\\[5pt] &2-i\,\textrm{.} \end{align}\right. |