Processing Math: 72%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.
No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control Panel Hide this Message
jsMath
Warning: jsMath requires JavaScript
to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
Antwort 1.3:1
Aus Online Mathematik Brückenkurs 2
a)
Stationärer Punkt: x = 0
Sattelpunkt: Keine
Lokales Minime: x = 0
Lokales Maxima: Keine
Globales Minima: x = 0
Globales Maxima: Keine
Streng steigend: x 0
Streng fallend: x 0
b)
Stationärer Punkt: x = − 1 , x = 1
Sattelpunkt: Keine
Lokales Minime: x = − 3 , x = 1
Lokales Maxima: x = − 1 , x = 2
Globales Minima: x = − 3
Globales Maxima: x = − 1
Streng steigend: [ − 3 − 1] , [1 2 ]
Streng fallend: [ − 1 1 ]
c)
Critical point:
x = − 2 , x = − 1 , x = 2 1
Sattelpunkt: x = − 1
Lokales Minime: x = − 2 , x = 2
Lokales Maxima: x = − 3 , x = 2 1
Globales Minima: x = − 2
Globales Maxima: x = − 3
Streng steigend: [ − 2 2 1 ]
Streng fallend: [ − 3 − 2] , [ 2 1 2 ]
d)
Stationärer Punkt:
x = − 2 5 , x = 2 1
Sattelpunkt: Keine
Lokales Minime:
x = − 2 5 , \displaystyle x=-\tfrac{1}{2} , \displaystyle x=2
Lokales Maxima:
\displaystyle x=-3 , \displaystyle x=-1 , \displaystyle x=\tfrac{1}{2}
Globales Minima: \displaystyle x=-\tfrac{5}{2}
Globales Maxima: \displaystyle x=-1
Streng steigend:
\displaystyle [-\tfrac{5}{2},-1] , \displaystyle [-\tfrac{1}{2},\tfrac{1}{2}]
Streng fallend:
\displaystyle [-3,-\tfrac{5}{2}] , \displaystyle [-1,-\tfrac{1}{2}] , \displaystyle [\tfrac{1}{2},2]