Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:4b

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

To start with, we determine the first derivative and begin by using the product rule:


ddxxsinlnx+coslnx=xsinlnx+coslnx+xsinlnx+coslnx=1sinlnx+coslnx+xsinlnx+coslnx


We divide up the differentiation of the second term in sections and use the chain rule:


sinlnx+coslnx=sinlnx+coslnx=coslnxlnxsinlnxlnx=coslnxx1sinlnxx1


This means that


ddxxsinlnx+coslnx=sinlnx+coslnx+coslnxsinlnx=2coslnx


The second derivative is


ddx2coslnx=2sinlnxlnx=2sinlnxx1=x2sinlnx