Processing Math: 45%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

1.2 Ableitungsregeln

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Inhalt:

  • Die Ableitung eines Produktes und eines Bruches
  • Die Ableitung einer verketteten Funktionen
  • Höhere Ableitungen

Lernziele:

Nach diesem Abschnitt sollten Sie folgendes können :

  • In Prinzip jede Funktion die auf Elementarfunktionen besteht ableiten.

Die Faktor- und Quotientenregel

Durch der Definition der Ableitung können wir Ableitungsregeln für Produkten und Quoten von Funktionen herleiten:

Faktor- und Quotientenregel:

ddxf(x)g(x)ddxf(x)g(x)=f(x)g(x)+f(x)g(x)=g(x)2f(x)g(x)f(x)g(x)

Beispiel 1

  1. ddx(x2ex)=2xex+x2ex=(2x+x2)ex.
  2. ddx(xsinx)=1sinx+xcosx=sinx+xcosx.
  3. ddx(xlnxx)=1lnx+xx11=lnx+11=lnx.
  4. ddxtanx=ddxsinxcosx=(cosx)2cosxcosxsinx(sinx)
    =cos2xcos2x+sin2x=1cos2x.
  5. ddxx1+x=(x)21x(1+x)12x=x2x2x12xx2x
    =x2xx1=x12xx.
  6. ddxxex1+x=(1+x)2(1ex+xex)(1+x)xex1
    =(1+x)2ex+xex+xex+x2exxex=(1+x)2(1+x+x2)ex.


Ableitung von verketteten Funktionen

Eine Funktion y=f(g) wo auch der Variabel g, selbst eine Funktion von x ist, nennt man eine verkettete Funktion. Die Funktion ist also y=fg(x) . Um eine verkettete Funktion abzuleiten, verwendet man die Kettenregel.

y(x)=fg(x)g(x). 

Nennen wir y=f(u) und u=g(x), bekommt die Kettenregel

dxdy=dudydxdu.

Man sagt dass die verkettete Funktion y aus einer Äußeren Funktion, f, und einer inneren Funktion g besteht. Analog nennt man f die äußere Ableitung, und g die innere Ableitung.


Beispiel 2

In der Funktion y=(x2+2x)4 ist

y=u4 die äußere Funktion und u=x2+2x die innere Funktion.
dudy=4u3 die äußere Ableitung und dxdu=2x+2 die innere Ableitung.

Die Ableitung der Funktion y, in Bezug auf x, ist durch die Kettenregel

dxdy=dudydxdu=4u3(2x+2)=4(x2+2x)3(2x+2).

Wenn man mig verketteten Funktionen rechnet, benennt man meistens nicht die Äußere und innere Ableitung mit neuen Funktionen, sondern man denkt einfach;

(outer derivative)( inner derivative).

Do not forget to use the product and quotient rules where necessary.

Beispiel 3

  1. f(x)=sin(3x2+1)

    Outer derivative: Inner derivative:cos(3x2+1)6x

    f(x)=cos(3x2+1)6x=6xcos(3x2+1)
  2. y=5ex2

    Outer derivative: Inner derivative:5ex22x

    y=5ex22x=10xex2
  3. f(x)=exsinx

    \displaystyle \begin{array}{ll} \text{Outer derivative:} & e^{x\, \sin x}\\ \text{ Inner derivative:} & 1\times \sin x + x \cos x \end{array}

    \displaystyle f^{\,\prime}(x) = e^{x\, \sin x} (\sin x + x \cos x)
  4. \displaystyle s(t) = t^2 \cos (\ln t)

    \displaystyle s'(t) = 2t \, \cos (\ln t) + t^2 \,\Bigl(-\sin (\ln t) \,\frac{1}{t}\Bigr) = 2t \cos (\ln t) - t \sin (\ln t)
  5. \displaystyle \frac{d}{dx}\,a^x = \frac{d}{dx}\,\bigl( e^{\ln a} \bigr)^x = \frac{d}{dx}\,e^{\ln a \times x} = e^{\ln a \times x} \, \ln a = a^x \, \ln a
  6. \displaystyle \frac{d}{dx}\,x^a = \frac{d}{dx}\,\bigl( e^{\ln x} \bigr)^a = \frac{d}{dx}\,e^{ a \, \ln x } = e^{a \, \ln x} \times a \, \frac{1}{x} = x^a \times a \, x^{-1} = ax^{a-1}

The chain rule also can be used repeatedly on a function that is composed at several levels. For example, the function \displaystyle y= f \bigl( g(h(x))\bigr) has the derivative


\displaystyle y'= f^{\,\prime} \bigl ( g(h(x))\bigr)
 \, g'(h(x)) \, h'(x)\,\mbox{.}


Beispiel 4

  1. \displaystyle \frac{d}{dx}\,\sin^3 2x = \frac{d}{dx}\,(\sin 2x)^3 = 3(\sin 2x)^2 \, \frac{d}{dx}\,\sin 2x = 3(\sin 2x)^2 \, \cos 2x \, \frac{d}{dx}\,(2x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^3 2x}{}= 3 \sin^2 2x\,\cos 2x\times 2 = 6 \sin^2 2x\,\cos 2x
  2. \displaystyle \frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr) = \cos \bigl((x^2 -3x)^4\bigr) \, \frac{d}{dx}\,(x^2 -3x)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\times 4 (x^2 -3x)^3 \, \frac{d}{dx}\,(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\times 4 (x^2 -3x)^3 \, (2x-3)
  3. \displaystyle \frac{d}{dx}\,\sin^4 (x^2 -3x) = \frac{d}{dx}\,\bigl( \sin (x^2 -3x) \bigr)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \, \frac{d}{dx}\,\sin(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x) \, \frac{d}{dx}(x^2 -3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x)\, (2x-3)
  4. \displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr) = e^{\sqrt{x^3-1}} \, \frac{d}{dx}\,\sqrt{x^3-1} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \, \frac{d}{dx}\,(x^3-1) \vphantom{\Biggl(}
    \displaystyle \phantom{\displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr)}{} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \times 3 x^2 = \frac { 3 x^2 e^{\sqrt{x^3-1}}} {2 \sqrt{x^3-1}} \vphantom{\dfrac{\dfrac{()^2}{()}}{()}}


Higher order derivatives

If a function is differentiable more than once, one can consider higher derivatives like the second derivative, third derivative, and so on.

The second derivative usually is written as \displaystyle f^{\,\prime\prime} (sometimes referred to as "double-prime"), while the third, fourth, etc. derivatives, are written as \displaystyle f^{\,(3)}, \displaystyle f^{\,(4)} and so on.

Other usual notations for these quantities are \displaystyle D^2 f, \displaystyle D^3 f, \displaystyle \ldots\,, \displaystyle \frac{d^2 y}{dx^2}, \displaystyle \frac{d^3 y}{dx^3}, \displaystyle \ldots.

Beispiel 5

  1. \displaystyle f(x) = 3\,e^{x^2 -1}
    \displaystyle f^{\,\prime}(x) = 3\,e^{x^2 -1} \, \frac{d}{dx}\,(x^2-1) = 3\,e^{x^2 -1} \times 2x = 6x\,e^{x^2 -1}\vphantom{\biggl(}
    \displaystyle f^{\,\prime\prime}(x) = 6\,e^{x^2 -1} + 6x\,e^{x^2 -1} \times 2x = 6\,e^{x^2 -1}\,(1+ 2x^2)
  2. \displaystyle y = \sin x\,\cos x
    \displaystyle \frac{dy}{dx} = \cos x\,\cos x + \sin x\,(- \sin x) = \cos^2 x - \sin^2 x\vphantom{\Biggl(}
    \displaystyle \frac{d^2 y}{dx^2} = 2 \cos x\,(-\sin x) - 2 \sin x \cos x = -4 \sin x \cos x
  3. \displaystyle \frac{d}{dx}\,( e^x \sin x) = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x) \vphantom{\Bigl(}
    \displaystyle \frac{d^2}{dx^2}(e^x\sin x) = \frac{d}{dx}\,\bigl(e^x (\sin x + \cos x)\bigr) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^2}{dx^2}(e^x\sin x)}{} = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = 2\,e^x \cos x \vphantom{\biggl(}
    \displaystyle \frac{d^3}{dx^3} ( e^x \sin x) = \frac{d}{dx}\,(2\,e^x \cos x) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^3}{dx^3} ( e^x \sin x)}{} = 2\,e^x \cos x + 2\,e^x (-\sin x) = 2\,e^x ( \cos x - \sin x )