Processing Math: 51%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.1:5

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Wir nehmen an, dass die Tangente(n) die Kurve im Punkt (x0y0) berührt. Dieser Punkt liegt natürlich auf der Kurve, erfüllt also

y0=x20. (1)

Schreiben wir die Tangente als y=kx+m, ist die Steigung k dasselbe wie die Ableitung, y=2x, im Punkt x=x0,

k=2x0. (2)

Die Bedingung, dass die Tangente durch den Punkt (x0y0) geht, gibt

y0=kx0+m. (3)

Die Bedingung dass die Tangente durch den Punkt (1,1) geht, gibt

1=k1+m. (4)

Die Gleichungen (1)-(4) sind ein System von Gleichungen mit den unbekannten x0, y0, k und m.

Da wir x0 und y0 suchen, eliminieren wir zuerst k und m,

Aus der Gleichung (2) folgt, dass k=2x0 Das in Gleichung (4) eingesetzt, liefert

\displaystyle 1 = -2x_0 + m\quad\Leftrightarrow\quad m = 2x_0+1\,\textrm{.}

Jetzt haben wir k, und m in Termen von \displaystyle x_0 und \displaystyle y_0 ausgedrückt, und Gleichung (3) hat nun nur \displaystyle x_0 und y_0-Terme,

\displaystyle y_0 = -2x_0^2 + 2x_0 + 1\,\textrm{.} (3')

Diese Gleichung, und die Gleichung (1), bilden ein Gleichungssystem für \displaystyle x_0 und \displaystyle y_0,

\displaystyle \left\{\begin{align}

y_{0} &= -x_0^{2}\,,\\[5pt] y_{0} &= -2x_0^2 + 2x_0 + 1\,\textrm{.} \end{align}\right.

Substituieren wir (1) in (3), erhalten wir eine Gleichung mit nur \displaystyle x_0,

\displaystyle -x_0^2 = -2x_0^2 + 2x_0 + 1\,,

also

\displaystyle x_0^2 - 2x_0 - 1 = 0\,\textrm{.}

Diese Quadratische Gleichung hat die Lösungen

\displaystyle x_0 = 1-\sqrt{2}\qquad\text{and}\qquad x_0 = 1+\sqrt{2}\,\textrm{.}

Durch die Gleichung (1) erhalten wir den entsprechenden y-Wert,

\displaystyle y_0 = -3+2\sqrt{2}\qquad\text{and}\qquad y_0 = -3-2\sqrt{2}\,\textrm{.}

Also erhalten wir die Punkte \displaystyle (1-\sqrt{2},-3+2\sqrt{2}) und \displaystyle (1+\sqrt{2},-3-2\sqrt{2})\,.