Lösung 1.3:3d
Aus Online Mathematik Brückenkurs 2
Lokale Extrempunkte einer Funktion sind entweder:
- stationäre Punkte mit
f ,(x)=0
- singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
- Endpunkte.
Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner null ist. Da der Nenner
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Der Ausdruck ist null, wenn der Zähler null ist. Wir erhalten die Gleichung
![]() ![]() |
Die linke Seite ist null, wenn einer der Faktoren
Die letzte Gleichung lösen wir am einfachsten, wenn wir
Durch quadratische Ergänzung erhalten wir
Die Lösungen sind 2
2=x2
Die Funktion hat also drei stationäre Punkte; 2−1
2−1
Wir bestimmen deren Charakter, indem wir das Vorzeichen der zweiten Ableitung bestimmen. Wir wissen schon, dass
![]() ![]() ![]() ![]() ![]() |
und durch quadratische Ergänzung von
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Die Ableitung ist also
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Wir betrachten nun die Vorzeichen der einzelnen Faktoren.
| ![]() ![]() | | ![]() ![]() | ||||
| | | | | | | |
| | | | | | | |
| | | | | | | |
Durch Ausmultiplizieren erhalten wir das Vorzeichen der Ableitung.
| ![]() ![]() | | ![]() ![]() | ||||
![]() | | | | | | | |
| ![]() | ![]() | ![]() | | ![]() | ![]() | ![]() |
Die Funktion hat also ein lokales Maximum im Punkt 2−1