Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.3:3d

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Lokale Extrempunkte einer Funktion sind entweder:

  1. stationäre Punkte mit f(x)=0,
  2. singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
  3. Endpunkte.

Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner null ist. Da der Nenner 1+x4 ist, ist er immer positiv. Wir leiten die Funktion mit der Quotientenregel ab, um die stationären Punkte zu finden.

f(x)=1+x421+x21+x41+x21+x4=1+x422x1+x41+x24x3=1+x422x+2x54x34x5=1+x422x12x2x4

Der Ausdruck ist null, wenn der Zähler null ist. Wir erhalten die Gleichung

2x12x2x4=0. 

Die linke Seite ist null, wenn einer der Faktoren x oder 12x2x4 null ist. Also ist x=0 oder

12x2x4=0.

Die letzte Gleichung lösen wir am einfachsten, wenn wir t=x2 substituieren,

12tt2=0.

Durch quadratische Ergänzung erhalten wir

t2+2t1(t+1)2121(t+1)2=0=0=2

Die Lösungen sind t=12 . Nur eine dieser Lösungen ist positiv und kann somit x2 sein. Also ist t=1+2=x2 .

Die Funktion hat also drei stationäre Punkte; x=21 , x=0 und x=21 .

Wir bestimmen deren Charakter, indem wir das Vorzeichen der zweiten Ableitung bestimmen. Wir wissen schon, dass

f(x)=1+x422x12x2x4

und durch quadratische Ergänzung von 12x2x4 (als Gleichung in x2) erhalten wir

12x2x4=12x2+x4=1x2+1212=2x2+12

Die Ableitung ist also

f(x)=1+x422x2x2+12.

Wir betrachten nun die Vorzeichen der einzelnen Faktoren.


x 21  0 21 
2x 0 + + +
2(x2+1)2 0 + + + 0
(x4+1)2 + + + + + + +

Durch Ausmultiplizieren erhalten wir das Vorzeichen der Ableitung.


x 21  0 21 
f(x) + 0 0 + 0
f(x) 21(2+1)  1 21(2+1) 

Die Funktion hat also ein lokales Maximum im Punkt x=21  ind ein lokales Minimum im Punkt x=0.