Lösung 1.2:3c
Aus Online Mathematik Brückenkurs 2
We can write the expression as
1−x2=
x
1−x2
−1
and then we see that we have "something raised to
x
1−x2
−1=−1
x
1−x2
x
1−x2
=−1
x
1−x2
2
x
1−x2
=−1x2
1−x2
x
1−x2
The next step is to differentiate the product
1−x2
1−x2
x
1−x2+x
1−x2
=−1x2
1−x2
1
1−x2+x
1−x2
The expression
1−x2
1−x2
1−x2+x
12
1−x2
1−x2
=−1x2
1−x2
1−x2+x
12
1−x2
−2x
=−1x2
1−x2
1−x2−x2
1−x2
We write the expression on the right over a common denominator:
1−x2
1−x2
1−x2
2−x2
=−1x2
1−x2
1−x21−x2−x2
=−1−2x2x2
1−x2
3
2
NOTE: When we make simplifications of the form
1−x2
2=1−x2