Lösung 2.1:5a
Aus Online Mathematik Brückenkurs 2
(HINT: multiply the top and bottom by the conjugate of the denominator.)
If we multiply top and bottom of the fraction by the conjugate expression,
x+9+
x
x+9−
x=1
x+9−
x
x+9+
x
x+9+
x=
x+9+
x
x+9
2−
x
2=x+9−x
x+9+
x=9
x+9+
x
Thus,
dx
x+9−
x=91
x+9+
x
dx
If we write the square roots in power form,
x+9
21+x21
dx
we see that we have a standard integral and can write down the primitive functions directly:
x+9
21+x21
dx=91
21+1
x+9
21+1+x21+121+1
+C=91
23
x+9
23+23x23
+C=91
32
x+9
23+32x23
+C=227
x+9
23+227x23+C
where C is an arbitrary constant.
This can also be written with square roots as
x+9
x+9+227x
x+C
To be completely certain that we have everything correctly, we differentiate the answer and see if we get back the integrand:
227
x+9
23+227x23+C
=227
23
x+9
23−1+227
23x23−1+0=91
x+9
21+91x21