Lösung 2.2:1a
Aus Online Mathematik Brückenkurs 2
A substitution of variables is often carried out so as to transform a complicated integral to one that is less complicated which one can either directly calculate or continue to work with.
When we carry out a substitution of variables
x
1. the integral must be rewritten in terms of the new variable
x
dx
In this case, we will perform the change of variables
3x−1
4
The relation between
x
dx=
3x−1
dx=3dx
which means that
Furthermore, when
One usually writes the whole substitution of variables as
\displaystyle \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix}
u=3x-1 \\
du=3\,dx \\
\end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}
Sometimes, we are more brief and hide the details:
\displaystyle \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ u=3x-1 \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}}
After the substitution of variables, we have a standard integral which is easy to compute.
In summary, the whole calculation is:
\displaystyle \begin{align}
& \int\limits_{1}^{2}{\frac{\,dx}{\left( 3x-1 \right)^{4}}}=\left\{ \begin{matrix}
u=3x-1 \\
du=3\,dx \\
\end{matrix} \right\}=\int\limits_{2}^{5}{\frac{\frac{1}{3}\,du}{u^{4}}} \\
& =\frac{1}{3}\int\limits_{2}^{5}{\,u^{-4}du}=\left[ \frac{u^{-4+1}}{-4+1} \right]_{2}^{5} \\
& =-\frac{1}{9}\left[ \frac{1}{u^{3}} \right]_{2}^{5}=-\frac{1}{9}\left( \frac{1}{5^{3}}-\frac{1}{2^{3}} \right) \\
& =-\frac{1}{9}\centerdot \frac{2^{3}-5^{3}}{2^{3}\centerdot 5^{3}}=\frac{117}{3^{2}\centerdot 2^{3}\centerdot 5^{3}} \\
& =\frac{3^{2}\centerdot 13}{3^{2}\centerdot 2^{3}\centerdot 5^{3}}=\frac{13}{2^{3}\centerdot 5^{3}}=\frac{13}{1000} \\
\end{align}.