Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
Lösung 3.3:1b
Aus Online Mathematik Brückenkurs 2
First, we write the number
3
Thus,
\displaystyle \frac{1}{2}+i\frac{\sqrt{3}}{2}=1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)
and de Moivre's formula gives
\displaystyle \begin{align}
& \left( \frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{12}=1^{12}\centerdot \left( \cos 12\centerdot \frac{\pi }{3}+i\sin 12\centerdot \frac{\pi }{3} \right) \\
& =1\centerdot \left( \cos 4\pi +i\sin 4\pi \right) \\
& =1\centerdot \left( 1+i\centerdot 0 \right)=1 \\
\end{align}