Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
If we use
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
cos
+isin
−4=4
cos
+isin
and the equation becomes
cos4
+isin4
=4
cos
+isin
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
r4=44
=
+2n
n an arbitrary integer
which gives us that
r=
42=
2
=
4+2n
n an arbitrary integer
for
1
2
4
43
45
and for different values of
\displaystyle w=\left\{ \begin{array}{*{35}l}
\sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\
\end{array} \right.=\left\{ \begin{array}{*{35}l}
1+i \\
-1+i \\
-1-i \\
1-i \\
\end{array} \right.
and the original variable z is
\displaystyle z=\left\{ \begin{array}{*{35}l}
2+i \\
i \\
-i \\
2-i \\
\end{array} \right.