Processing Math: 88%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:2d

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

If we use w=z1 as a new unknown and move the term 4 over to the right-hand side, we have a binomial equation,


w4=4


We can solve this equation in the usual way by using polar form and de Moivre's formula. We have


w=rcos+isin4=4cos+isin 


and the equation becomes


r4cos4+isin4=4cos+isin 


The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of 2,


r4=44=+2nn an arbitrary integer  


which gives us that


r=42=2=4+2nn an arbitrary integer  


for n=0 1 2 and 3, the argument assumes the four different values


4 43 45 and 47


and for different values of n we obtain values of which are equal to those above, apart from multiples of 2. Thus, we have four solutions,


\displaystyle w=\left\{ \begin{array}{*{35}l} \sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\ \sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\ \sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\ \sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\ \end{array} \right.=\left\{ \begin{array}{*{35}l} 1+i \\ -1+i \\ -1-i \\ 1-i \\ \end{array} \right.


and the original variable z is


\displaystyle z=\left\{ \begin{array}{*{35}l} 2+i \\ i \\ -i \\ 2-i \\ \end{array} \right.