Lösung 3.3:4a
Aus Online Mathematik Brückenkurs 2
This is a typical binomial equation which we solve in polar form.
We write
cos
+isin
i=1
cos
2+isin
2
and, on using de Moivre's formula, the equation becomes
cos2
+isin2
=1
cos
2+isin
2
Both sides are equal when
r2=12
=
2+2n
n an arbitrary integer
which gives that
r=1
=
4+n
n an arbitrary integer
When
The solutions to the equation are
\displaystyle z=\left\{ \begin{array}{*{35}l}
\ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\
\ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\
\end{array} \right.=\left\{ \begin{array}{*{35}l}
\ \frac{1+i}{\sqrt{2}} \\
\ -\frac{1+i}{\sqrt{2}} \\
\end{array} \right.