Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:4a

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

This is a typical binomial equation which we solve in polar form.

We write


z=rcos+isini=1cos2+isin2 


and, on using de Moivre's formula, the equation becomes


r2cos2+isin2=1cos2+isin2 


Both sides are equal when


r2=12=2+2nn an arbitrary integer  


which gives that


r=1=4+nn an arbitrary integer  


When n=0 and n=1, we get two different arguments for , whilst different values of n only give these arguments plus/minus a multiple of 2.

The solutions to the equation are


\displaystyle z=\left\{ \begin{array}{*{35}l} \ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ \ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\ \end{array} \right.=\left\{ \begin{array}{*{35}l} \ \frac{1+i}{\sqrt{2}} \\ \ -\frac{1+i}{\sqrt{2}} \\ \end{array} \right.