Lösung 3.4:5
Aus Online Mathematik Brückenkurs 2
A polynomial is said to have a triple root
z−c
3
For our equation, this means that the left-hand side can be factorized as
z−c
3
z−d
according to the factor theorem, where
We will now try to determine
If we expand the right-hand side above, we get
z−c
3
z−d
=
z−c
2
z−c
z−d
=
z2−2cz+c2
z−c
z−d
=
z3−3cz2+3c2z−c3
z−d
=z4−
3c+d
z3+3c
c+d
z2−c2
c−3d
z+c3d
and this means that we must have
3c+d
z3+3c
c+d
z2−c2
c−3d
z+c3d
Because two polynomials are equal if an only if their coefficients are equal, this gives
3c+d=03c
c+d
=−6−c2
c−3d
=ac3d=b
From the first equation, we obtain
c−3c
=−6−6c2=−6
i.e.
\displaystyle \begin{align}
& c=1,\ d=-3:\quad a=-1^{2}\centerdot \left( 1-3\centerdot \left( -3 \right) \right)=8 \\
& b=1^{3}\centerdot \left( -3 \right)=-3 \\
\end{align}
\displaystyle \begin{align} & c=-1,\ d=3:\quad a=-\left( -1 \right)^{2}\centerdot \left( -1-3\centerdot 3 \right)=10 \\ & b=\left( -1 \right)^{3}\centerdot 3=-3 \\ \end{align}
Therefore, there are two different answers:
\displaystyle \bullet \quad a=\text{8 }
and
\displaystyle b=-\text{3}
give the triple root
\displaystyle z=\text{1}
and the single root
\displaystyle z=-\text{3};
\displaystyle \bullet \quad a=10 and \displaystyle b=-\text{3 }give the triple root \displaystyle z=-\text{1 } and the single root \displaystyle z=\text{3}.