Processing Math: Done
Lösung 1.2:3c
Aus Online Mathematik Brückenkurs 2
We can write the expression as
![]() ![]() ![]() ![]() |
and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The next step is to differentiate the product 1−x2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The expression 1−x2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We write the expression on the right over a common denominator,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: When we make simplifications of the form 1−x2
2=1−x2