Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
Let us first divide both sides by
The two complex quotients become
![]() |
Thus, the equation becomes
Now, we complete the square of the left-hand side,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we set
which we solve by putting
or, if the left-hand side is expanded,
If we identify the real and imaginary parts on both sides, we get
![]() ![]() |
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
![]() ![]() ![]() |
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
Together, the three relations constitute the following system of equations:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
From the first and the third equations, we can relatively easily obtain the values that
Add the first and third equations,
which gives that \displaystyle x=\pm \tfrac{1}{2}.
Then, subtract the first equation from the third equation,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2\rlap{\bigr)} |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \tfrac{9}{2} |
i.e. \displaystyle y=\pm\tfrac{3}{2}.
This gives four possible combinations,
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right. |
of which only two also satisfy the second equation.
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. |
This means that the binomial equation has the two solutions,
\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad and \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,, |
and that the original equation has the solutions
\displaystyle z=1+4i\qquad and \displaystyle \qquad z=i |
according to the relation \displaystyle w=z-\frac{1+5i}{2}.
Finally, we check that the solutions really do satisfy the equation.
\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}