Lösung 3.4:2
Aus Online Mathematik Brückenkurs 2
If the equation has the root
for some constants
Thus, the equation can be written as
The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor
Hence, we determine the roots by solving the equation
Completing the square gives
![]() ![]() |
and taking the root gives that i
The equation's other roots are \displaystyle z=1-i and \displaystyle z=1+i\,.
As an extra check, we investigate whether \displaystyle z = 1 \pm i really are roots of the equation.
\displaystyle \begin{align} z = 1+i:\quad z^3-3z^2+4z-2 &= \bigl((z-3)z+4\bigr)z-2\\[5pt] &= \bigl((1+i-3)(1+i)+4\bigr)(1+i)-2\\[5pt] &= \bigl((-2+i)(1+i)+4\bigr)(1+i)-2\\[5pt] &= (-2+i-2i-1+4)(1+i)-2\\[5pt] &= (1-i)(1+i)-2\\[5pt] &= 1^2 - i^2 - 2\\[5pt] &= 1+1-2\\[5pt] &= 0\,,\\[10pt] z = 1-i:\quad z^3-3z^2+4z-2 &= \bigl((z-3)z+4\bigr)z-2\\[5pt] &= \bigl((1-i-3)(1-i)+4\bigr)(1-i)-2\\[5pt] &= \bigl((-2-i)(1-i)+4\bigr)(1-i)-2\\[5pt] &= (-2-i+2i-1+4)(1-i)-2\\[5pt] &= (1+i)(1-i)-2\\[5pt] &= 1^2-i^2-2\\[5pt] &= 1+1-2\\[5pt] &= 0\,\textrm{.} \end{align}
Note: Writing
\displaystyle z^3-3z^2+4z-2 = \bigl((z-3)z+4\bigr)z-2 |
is known as the Horner scheme and is used to reduce the amount of the arithmetical work.