Processing Math: Done
Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
If we use
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
![]() ![]() ![]() ![]() ![]() ![]() |
and the equation becomes
![]() ![]() ![]() ![]() |
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
![]() ![]() ![]() ![]() ![]() ![]() |
which gives us that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
For 1
![]() ![]() ![]() ![]() ![]() |
and for other values of
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and the original variable z is
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |