Processing Math: 28%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:5d

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Let us first divide both sides by 4+i, so that the coefficient in front of z2 becomes 1,

z2+4+i121iz=174+i.

The two complex quotients become

4+i121i174+i=(4+i)(4i)(121i)(4i)=42i24i84i+21i2=16+11785i=171785i=15i=17(4i)(4+i)(4i)=42i217(4i)=1717(4i)=4i.

Thus, the equation becomes

z2(1+5i)z=4i.

Now, we complete the square of the left-hand side,

z21+5i221+5i2z21+5i241+25i+425i2z21+5i24125i+425z21+5i2=4i=4i=4i=2+23i.

If we set w=z21+5i, we have a binomial equation in w,

w2=2+23i

which we solve by putting w=x+iy,

(x+iy)2=2+23i

or, if the left-hand side is expanded,

x2y2+2xyi=2+23i.

If we identify the real and imaginary parts on both sides, we get

x2y22xy=2=23

and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:

x2+y2=(2)2+232=25. 

Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.

Together, the three relations constitute the following system of equations:

x2y22xyx2+y2=2=23=25.

From the first and the third equations, we can relatively easily obtain the values that \displaystyle x and \displaystyle y can take.

Add the first and third equations,

\displaystyle x^2 \displaystyle {}-{} \displaystyle y^2 \displaystyle {}={} \displaystyle -2
\displaystyle +\ \ \displaystyle x^2 \displaystyle {}+{} \displaystyle y^2 \displaystyle {}={} \displaystyle \tfrac{5}{2}

\displaystyle 2x^2 \displaystyle {}={} \displaystyle \tfrac{1}{2}

which gives that \displaystyle x=\pm \tfrac{1}{2}.

Then, subtract the first equation from the third equation,

\displaystyle x^2 \displaystyle {}+{} \displaystyle y^2 \displaystyle {}={} \displaystyle \tfrac{5}{2}
\displaystyle -\ \ \displaystyle \bigl(x^2 \displaystyle {}-{} \displaystyle y^2 \displaystyle {}={} \displaystyle -2\rlap{\bigr)}

\displaystyle 2y^2 \displaystyle {}={} \displaystyle \tfrac{9}{2}

i.e. \displaystyle y=\pm\tfrac{3}{2}.

This gives four possible combinations,

\displaystyle \left\{\begin{align}

x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right.

of which only two also satisfy the second equation.

\displaystyle \left\{\begin{align}

x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right.

This means that the binomial equation has the two solutions,

\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad and \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,,

and that the original equation has the solutions

\displaystyle z=1+4i\qquad and \displaystyle \qquad z=i

according to the relation \displaystyle w=z-\frac{1+5i}{2}.

Finally, we check that the solutions really do satisfy the equation.

\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}