Processing Math: 53%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:6

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Polar form

Wir lösen die Gleichung zuerst in Polarform,

z1+i=r(cos+isin)=2cos4+isin4 

und durch den Moivrischen Satz erhalten wir die Gleichung

r2(cos2+isin2)=2cos4+isin4. 

Damit die beiden Seiten gleich sein sollen. müssen die Beträge der beiden Seiten gleich sein und die Argumente der beiden Seiten dürfen sich nur mit einen Multipel von 2 unterscheiden,

r22=2=4+2n

Dies ergibt

r=2=21212=214=42=8+n

Dies entspricht zwei Lösungen, nachdem alle geraden Zahlen das Argument 8 entsprechen, plus einen Multipel von 2, und alle ungerade Zahlen das Argument 98 entsprechen, plus einen Multipel von 2.

In Polarform lauten die Lösungen also

z=42cos8+isin842cos89+isin89.


Eine Lösung, z=42(cos(8)+isin(8)  liegt im ersten Quadrant, und die zweite Lösung, z=42(cos(98)+isin(98))  liegt im dritten Quadrant.


Auf der Form a + bi

Wir schreiben hier z=x+iy und versuchen die Konstanten x und y zu bestimmen.

Mit z=x+iy, erhalten wir die Gleichung

(x+iy)2x2y2+2xyi=1+i=1+i.

Nachdem der Real- und Imaginärteil der beiden Seiten gleich sein muss, erhalten wir

x2y22xy=1=1. 

Wir können hier x und y direkt bestimmen, aber um es einfacher zu machen, berechnen wir den Betrag von beiden Seiten,

x2+y2=12+12=2. 

und wir erhalten insgesamt dre Gleihungen,

x2y22xyx2+y2=1=1=2.

Addieren wir die erste Gleichung zur dritten erhalten wir

x2 y2 = 1
+   x2 + y2 = \displaystyle \sqrt{2}

\displaystyle 2x^2 \displaystyle {}={} \displaystyle \sqrt{2}+1

und wir erhalten;

\displaystyle x=\pm \sqrt{\frac{\sqrt{2}+1}{2}}\,\textrm{.}

Subtrahieren wir die erste Gleichung von der dritten erhalten wir,

\displaystyle x^2 \displaystyle {}+{} \displaystyle y^2 \displaystyle {}={} \displaystyle \sqrt{2}
\displaystyle -\ \ \displaystyle \bigl(x^2 \displaystyle {}-{} \displaystyle y^2 \displaystyle {}={} \displaystyle 1\bigr)

\displaystyle 2y^2 \displaystyle {}={} \displaystyle \sqrt{2}-1

und wir erhalten;

\displaystyle y=\pm \sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.}

Insgesamt haben wir also vier mögliche Lösungen

\displaystyle \left\{\begin{align}

x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \quad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align} \right.

Die zweite Gleichung sagt dass \displaystyle xy positiv sein soll, und wir behalten daher nur die Gleichungen

\displaystyle \left\{\begin{align}

x &= \sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= \sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right. \qquad\text{und}\qquad \left\{\begin{align} x &= -\sqrt{\frac{\sqrt{2}+1}{2}}\\[5pt] y &= -\sqrt{\frac{\sqrt{2}-1}{2}} \end{align}\right.

Nachdem wir wissen dass unsere Gleichung zwei Lösungen hat, müssen dies unsere Lösungen sein:

\displaystyle z = \left\{\begin{align}

\sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\,,\\[5pt] -\sqrt{\frac{\sqrt{2}+1}{2}} - i\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align}\right.

Vergleichen wir diese Lösungen mit den Lösungen in Polarform, erhalten wir

\displaystyle \sqrt[4]{2}\Bigl(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \Bigr) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}

und daher ist

\displaystyle \begin{align}

\cos\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}+1}{2}}\,,\\[5pt] \sin\frac{\pi}{8} &= \frac{1}{\sqrt[4]{2}}\sqrt{\frac{\sqrt{2}-1}{2}}\,\textrm{.} \end{align}

und wir erhalten auch

\displaystyle \tan\frac{\pi}{8} = \frac{\sin\dfrac{\pi}{8}}{\cos\dfrac{\pi}{8}} = \frac{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}-1}{2}}}{\dfrac{1}{\sqrt[4]{2}}\sqrt{\dfrac{\sqrt{2}+1}{2}}} = \sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\,\textrm{.}

Wir können diesen Ausdruck vereinfachen, indem wir den Ausdruck mit den konjugieren Nenner erweitern,

\displaystyle \begin{align}

\tan\frac{\pi}{8} &= \sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}} = \sqrt{\frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2-1^2}}\\[5pt] &= \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2}-1\,\textrm{.} \end{align}